പെണ്ണിന്റെ സാദ്ധ്യതയും സിംഹത്തിന്റെ വെള്ളെഴുത്തും

ഗണിതം (Mathematics), ചുഴിഞ്ഞുനോക്കല്‍, പ്രതികരണം, പ്രശ്നങ്ങള്‍ (Problems)

(അഥവാ ശ്രീഹരി vs മധുസൂദനൻ: ഒരു പെണ്ണുകേസിന്റെ സിംഹഭാഗം)

വെള്ളെഴുത്തിന്റെ കർമ്മണിപ്രയോഗം എന്ന പോസ്റ്റിൽ ഇട്ട കമന്റിൽ ബാബുകല്യാണം (ഇവനെയൊന്നും കല്യാണം കഴിപ്പിച്ചു വിടാൻ ആരുമില്ലേ?) ചോദിച്ച ചോദ്യത്തിനു് ശ്രീഹരിയും (ഇവിടെയും ഇവിടെയും ഇവിടെയും)മധുസൂദനൻ പേരടിയും (ഇവിടെയും ഇവിടെയും ഇവിടെയും) തമ്മിൽ നടന്ന തർക്കത്തിനു മേൽ എന്റെ അഭിപ്രായമാണു താഴെ:

ശ്രീഹരിയുടെയും മധുസൂദനന്റെയും വാദങ്ങൾ മുഴുവനും വായിച്ചില്ല. എങ്കിലും, ശ്രീഹരിയാണു ശരിയെന്നു തോന്നുന്നു.

ഞാൻ മനസ്സിലാക്കിയിടത്തോളം ബാബു കല്യാണത്തിന്റെ പ്രശ്നം ഇങ്ങനെയാണു്:

  1. രണ്ടു സിംഹവും രണ്ടു പെണ്ണും.
  2. രാജാവു് നാണയം ടോസ്സ് ചെയ്യുന്നു. അശോകസ്തംഭം വന്നാൽ ആദ്യത്തെ മുറിയിൽ സിംഹത്തെ കയറ്റുന്നു. അക്കം വന്നാൽ പെണ്ണിനെയും.
  3. രാജാവു വീണ്ടും നാണയം ടോസ്സ് ചെയ്യുന്നു. അശോകസ്തംഭം വന്നാൽ രണ്ടാമത്തെ മുറിയിൽ സിംഹത്തെ കയറ്റുന്നു. അക്കം വന്നാൽ പെണ്ണിനെയും.
  4. തടവുകാരൻ ഒരു മുറി തുറന്നു് അകത്തു കയറുന്നു. ഏതു മുറിയിൽ എന്താണെന്നു് അവനു് അറിയില്ല. കയറുന്ന സ്ഥലത്തു് സിംഹമാണെങ്കിൽ ഉടനേ സുഖമായി മരിക്കുന്നു. പെണ്ണാണെങ്കിൽ അവളെ കല്യാണം കഴിച്ചു് വളരെക്കാലം കൊണ്ടു് ഇഞ്ചിഞ്ചായി വേദനയനുഭവിച്ചു മരിക്കുന്നു.

അവനു് സിംഹത്തിന്റെ വായിൽ‌പ്പെട്ടു മരിക്കാതെ പെണ്ണിനെക്കെട്ടി ജീവിക്കാനുള്ള സാദ്ധ്യതയാണു കണ്ടുപിടിക്കേണ്ടതു്.

ഇനി, താഴെപ്പറയുന്ന കാര്യങ്ങൾ കൂടി ശരിയാണെന്നും നമുക്കു് അനുമാനിക്കാം.

  • നാണയത്തിന്റെ ഒരു വശത്തു് അശോകസ്തംഭവും മറ്റേ വശത്തു് അക്കവും ആകണം. അല്ലാതെ രണ്ടിലും സ്തംഭം വരരുതു്. ഒരിടത്തു് അശോകസ്തംഭവും അക്കവും കൂടിയും മറ്റേ വശത്തു കുടുംബാസൂത്രണത്തിന്റെ ചിഹ്നവും ഉള്ള നാണയം പാടില്ല.
  • അശോകസ്തംഭവും അക്കവും വീഴാനുള്ള സാദ്ധ്യത തുല്യമായിരിക്കണം. നാണയം unbiased ആയിരിക്കണം എന്നർത്ഥം.
  • കുറ്റവാളിക്കു യാതൊരു സൂചനയും ഇല്ല. അതിനാൽ അയാൾ ഒരു മുറി തിരഞ്ഞെടുക്കുന്നതും നാണയം ടോസ്സ് ചെയ്യുന്നതു പോലെ തന്നെ. 50%-50% സാ‍ദ്ധ്യത.

ഈ പ്രശ്നത്തെ രണ്ടു തരത്തിൽ കാണാം.

  1. മേൽ‌പ്പറഞ്ഞ പ്രശ്നം നമുക്കു തന്നിട്ടു് ഉത്തരം കണ്ടുപിടിക്കാൻ പറയുക.
  2. രാജാവു് നാണയം ടോസ്സ് ചെയ്തു് രണ്ടു മുറിയും നിറച്ചതിനു ശേഷം ഉത്തരം കണ്ടുപിടിക്കാൻ പറയുക.

രണ്ടിലും ഉത്തരം രണ്ടാണു്.

രണ്ടാമത്തേതു് ആദ്യം എടുക്കാം. രാജാവ് നാണയമിട്ടപ്പോൾ രണ്ടു തവണയും അശോകസ്തംഭം വന്നെന്നിരിക്കട്ടേ. രണ്ടിലും സിംഹങ്ങൾ. ഇവിടെ പ്രതി സിംഹത്തിന്റെ വായിൽ അകപ്പെടാനുള്ള സാദ്ധ്യത 100% ആണു്. നേരെ മറിച്ചു്, രണ്ടിലും അക്കം വരുകയും രണ്ടിലും പെണ്ണുങ്ങൾ ആവുകയും ചെയ്താൽ അതു 0% ആണു്. ഇനി ഒരെണ്ണം അശോകസ്തംഭവും മറ്റേതു് അക്കവും ആയി ഒന്നിൽ സിംഹവും മറ്റേതിൽ പെണ്ണുമായാൽ സിംഹമുള്ള വാതിൽ അയാൾ തിരഞ്ഞെടുക്കാൻ സാദ്ധ്യത 50% ആണു്.

രാജാവിന്റെ കോയിൻ ടോസ്സ് അനുസരിച്ചു് ഫലം മാറാം എന്നർത്ഥം.

ഇനി, ആദ്യത്തെ ചോദ്യം പരിശോധിക്കാം.

ഇതിൽ മൂന്നുതരം സംഭവങ്ങളുണ്ടു്.

ഒന്നാം സംഭവം: കുറ്റവാളി തിരഞ്ഞെടുക്കുന്ന വാതിൽ

സൂചനയൊന്നും ഇല്ലാത്തതിനാൽ ആദ്യത്തേയോ രണ്ടാമത്തെയോ വാതിൽ തിരഞ്ഞെടുക്കാനുള്ള സാദ്ധ്യത 1/2 വീതം.

രണ്ടാം സംഭവം: നാണയമിടുന്നതും സിംഹത്തെയോ പെണ്ണിനെയോ മുറിയിൽ ഇടുന്നതും.

ഒരു പോലെ സാദ്ധ്യതയുള്ള നാലു് സംഭവങ്ങളാണു് രാജാവു നാണയം ടോസ്സ് ചെയ്യുമ്പോൾ ഉണ്ടാവുക.

  1. രണ്ടും അശോകസ്തംഭം. രണ്ടിലും സിംഹം.
  2. രണ്ടും അക്കം. രണ്ടിലും പെൺ‌കുട്ടികൾ.
  3. ആദ്യം അശോകസ്തംഭം, പിന്നെ അക്കം. ആദ്യത്തേതിൽ സിംഹം, രണ്ടാമത്തേതിൽ പെണ്ണു്.
  4. ആദ്യം അക്കം, പിന്നെ അശോകസ്തംഭം. ആദ്യത്തേതിൽ പെണ്ണു്, രണ്ടാമത്തേതിൽ സിംഹം.

ഇവ നാലിനും സാദ്ധ്യത തുല്യം. 1/4 വീതം.

മൂന്നാം സംഭവം (ക): സിംഹമുള്ള മുറിയിൽ അകപ്പെട്ടാൽ സിംഹത്തിന്റെ വായിൽ പെട്ടു മരിക്കാനുള്ള സാദ്ധ്യത

സിംഹത്തിനു വെള്ളെഴുത്തോ വയറ്റുനോവോ ഇല്ലെന്നു കരുതിയാൽ ഇതു് നൂറു ശതമാനം ആണു്. 1 എന്നർത്ഥം.

മൂന്നാം സംഭവം (ഖ): പെണ്ണുള്ള മുറിയിൽ അകപ്പെട്ടാൽ സിംഹത്തിന്റെ വായിൽ പെട്ടു മരിക്കാനുള്ള സാദ്ധ്യത

ഇതു് പൂജ്യം ആണു്. കൂടുതൽ വേദനാജനകമായ മരണം അവനെ കാത്തിരിക്കുന്നു.

ഈ മൂന്നു സംഭവങ്ങളും തമ്മിൽ ബന്ധമില്ലാത്തതും ഒരേ സമയം സംഭവിക്കുന്നവയും ആകുന്നതു കൊണ്ടു് അവയുടെ സംഭാവ്യതകളെ തമ്മിൽ ഗുണിക്കുന്നു. അങ്ങനെ കിട്ടുന്ന സാദ്ധ്യതകളെ തമ്മിൽ കൂട്ടി മൊത്തം സാദ്ധ്യത കണ്ടു പിടിക്കുന്നു.

അപ്പോൾ സിംഹത്തിന്റെ വായിൽ അകപ്പെടാനുള്ള സാദ്ധ്യത

= (1/2 x 1/4 x 1 + 1/2 x 1/4 x 1) + (1/2 x 1/4 x 0 + 1/2 x 1/4 x 0) + (1/2 x 1/4 x 1 + 1/2 x 1/4 x 0) + (1/2 x 1/4 x 0 + 1/2 x 1/4 x 1)
= 1/4 + 0 + 1/8 + 1/8 = 1/2.

അതായതു്, കുറ്റവാളി സിംഹത്തിന്റെ വായിലകപ്പെടാനുള്ള സാദ്ധ്യത നേർപകുതി (50%) ആണു്.


സംഭാവ്യതാശാസ്ത്രത്തിലെ പല പ്രശ്നങ്ങളുടെയും ഉത്തരങ്ങളും ഇതുപോലെ ശരിയായി കണക്കുകൂട്ടിയാലേ കിട്ടൂ. സാഹചര്യമനുസരിച്ചു് അതു മാറുകയും ചെയ്യും. മധുസൂദനൻ പേരടി പറയുന്നതു പോലെ ചായക്കടയിലെ ഇന്റ്യൂഷനുമായി പോയാൽ പലപ്പോഴും തെറ്റായ ഉത്തരമേ കിട്ടൂ.

ഈ തരത്തിലുള്ള മറ്റൊരു പ്രശസ്ത പ്രശ്നമുണ്ടു് – മോണ്ടി ഹാൾ പ്രശ്നം. ഇതിൽ മൂന്നു വാതിലും ഒരു പെണ്ണും രണ്ടു സിഹവും ഉണ്ടു്. രാജാവു നാണയമൊന്നും ടോസ്സ് ചെയ്യുന്നില്ല. പകരം ഒരു വാതിലിനു പിന്നിൽ പെണ്ണിനെയും മറ്റു രണ്ടു വാതിലുകളുടെയും പിറകിൽ സിംഹങ്ങളെയും നിർത്തിയിരിക്കുന്നു. എന്നിട്ടു് കുറ്റവാളിയോടു് ഒരു വാതിൽ തിരഞ്ഞെടുക്കാൻ പറയും. അയാൾ ഏതു വാതിൽ തിരഞ്ഞെടുത്താലും സിംഹമുള്ള വേറേ ഒരു മുറിയെങ്കിലും ഉണ്ടായിരിക്കുമല്ലോ. ആ മുറിയുടെ കിളിവാതിൽ തുറന്നിട്ടു് അതിനകത്തു സിംഹമാണെന്നു് കുറ്റവാളിയെ കാണിക്കും. എന്നിട്ടു് കുറ്റവാളിക്കു് തന്റെ തീരുമാനം പുനഃപരിശോധിക്കാൻ അവസരം കൊടുക്കും. ഒന്നുകിൽ അയാൾക്കു് ആദ്യത്തെ വാതിൽ തന്നെ തുറക്കാം. അല്ലെങ്കിൽ അയാൾക്കു് സിംഹത്തെ കണ്ടതല്ലാത്ത മൂന്നാമത്തെ വാതിൽ തുറക്കാം. ഏതു തുറക്കുന്നതാണു് നല്ലതു്?

ഇതു വളരെയധികം തർക്കമുണ്ടാക്കിയിട്ടുള്ള ഒരു പ്രശ്നമാണു്. ഒരിക്കൽ ഈ ചോദ്യത്തിനു് മറിലിൻ സാവന്ത് പറഞ്ഞ ഉത്തരം തെറ്റാണെന്നു പറഞ്ഞു് പല ഗണിതശാസ്ത്രപ്രൊഫസർ മാർ വരെ ബഹളമുണ്ടാക്കിയായിരുന്നു. (മറിലിൻ പറഞ്ഞതു ശരിയായിരുന്നു.)

മൂന്നാമത്തെ വാതിൽ തുറക്കുന്നതാണു നല്ലതു്. കാരണം, ഓരോ വാതിലിലും പെണ്ണുണ്ടാകാനുള്ള സാദ്ധ്യത തുല്യമാണു് – 1/3 വീതം. ആദ്യത്തെ വാതിൽ തിരഞ്ഞെടുത്തപ്പോൾ അതിൽ പെണ്ണുണ്ടാകാനുള്ള സാദ്ധ്യത 1/3 ആയിരുന്നു. മറ്റു രണ്ടെണ്ണത്തിനും 2/3-ഉം. മറ്റു രണ്ടെണ്ണത്തിലെ സിംഹമുള്ള ഒരു വാതിൽ ഒഴിവാക്കിയാൽ മൂന്നാമത്തെ വാതിലിൽ പെണ്ണുണ്ടാകാനുള്ള സാദ്ധ്യത അതിനാൽ 2/3 ആണു്. അതായതു് തീരുമാനം മാറ്റിയാൽ സാദ്ധ്യത ഇരട്ടിയാകും എന്നർത്ഥം.

തർക്കിക്കുന്നവർക്കു രണ്ടു വാദങ്ങളാണു്:

  1. ഓരോ വാതിലിന്റെയും സാദ്ധ്യത 1/3 ആണു്. ഒരു വാതിൽ സിംഹമാണന്നറിഞ്ഞാലും മറ്റു രണ്ടിലെയും സാദ്ധ്യതകൾ മാറുന്നില്ല. മാറിയാലും അവ 1/2 വീതമായിരിക്കും.

    ഇതു തെറ്റാണു്.

  2. സിംഹത്തെ കാണുന്നതിനു മുമ്പു് എല്ലാ വാതിലിന്റെയും സാദ്ധ്യത 1/3 ആയിരുന്നു. സിംഹത്തെ കണ്ടുകഴിഞ്ഞു് ആദ്യത്തെ വാതിലിന്റെ സംഭാവ്യത മാറുന്നില്ലെങ്കിലും മൂന്നാമത്തെ വാതിലിന്റെ സാദ്ധ്യത 1/3-ൽ നിന്നു് 1/2 ആയി ഉയർന്നു.

    ഇതിലും മൂന്നാമത്തെ വാതിൽ തുറക്കുന്നതു തന്നെയാണു നല്ലതെന്നു പറയുന്നു എങ്കിലും കാരണം തെറ്റാണു്.

കൂടുതൽ വിവരങ്ങൾക്കു് വിക്കി ലേഖനം തന്നെ വായിക്കൂ. അതിന്റെ വിശദമായ വിശകലനവും തിയറിയും അതു പോലെയുള്ള മറ്റു പ്രശ്നങ്ങളിലേക്കുമുള്ള ലിങ്കും ഒക്കെയായി ഒരു ദിവസത്തെ വായനയ്ക്കുണ്ടു്.


സൂക്ഷിച്ചു കൈകാര്യം ചെയ്യേണ്ട ഒരു ഗണിതശാഖയാണു് സംഭാവ്യതാശാസ്ത്രം (Theory of Probability). അതിന്റെ ബേസിക് അസമ്‌പ്ഷൻസ് വിട്ടു പോകുന്നതാണു് പലപ്പോഴും തെറ്റു പറ്റാൻ കാരണം. അതുപോലെ നമുക്കു് അറിവുള്ള കാര്യങ്ങൾ മാറുമ്പോൾ സംഭാവ്യതയും മാറും. മുകളിൽ പറഞ്ഞ മോണ്ടി ഹാൾ പ്രശ്നം ഒരുദാഹരണം.

ഇതു പോലെ മറ്റൊരു പ്രഹേളികയുള്ളതു് ഒരു കഥയായി താഴെച്ചേർക്കുന്നു.


ഒരു ഇന്റർവ്യൂവിനു കാലിഫോർണിയയിൽ എത്തിയതാണു ഞാൻ. എയർപോർട്ടിൽ നിന്നു് എന്നെ കൂട്ടിക്കൊണ്ടു പോകാമെന്നു് സിബു പറഞ്ഞിരുന്നു. സിബുവും ഞാനും അതു വരെ തമ്മിൽ കണ്ടിട്ടില്ല. ബ്ലോഗിലൂടെയുള്ള പരിചയമേ ഉള്ളൂ.

ഇന്റർവ്യൂവിനു കുത്തിയിരുന്നു പഠിച്ച കൂട്ടത്തിൽ ഏറ്റവും അവസാനം പഠിച്ചതു ഗണിതമായിരുന്നു. ഇവർ പസിലുകളൊക്കെ ചോദിക്കുമെന്നാണു കേട്ടിട്ടുള്ളതു്. വിമാനത്തിലിരുന്നു വായിച്ചതു് പ്രോബബിളിറ്റി തിയറിയാണു്. അതിനാൽ വെളിയിൽ ഇറങ്ങിയപ്പോൾ കാണുന്നിടത്തെല്ലാം പ്രോബബിളിറ്റി കാണാൻ തുടങ്ങി. തല നേരേ നിൽക്കുന്നില്ല.

എയർപോർട്ടിന്റെ വെളിയിൽ ഇറങ്ങി. സിബുവിന്റെ പൊടി പോലുമില്ല. ഇനി ഇങ്ങേർ പറ്റിക്കുമോ? ഏയ് ഇല്ല, ഒരു ബ്ലോഗർ മറ്റൊരു ബ്ലോഗറെ പറ്റിക്കാനുള്ള സാദ്ധ്യത വളരെ കുറവാണു്. കൂടി വന്നാൽ കേസു കൊടുക്കും, അത്രയേ ഉള്ളൂ.

സിബുവിനെ വിളിച്ചു. സിബു വീട്ടിൽ നിന്നു് ഇറങ്ങുന്നതേ ഉള്ളൂ. “ഉമേഷേ, ഞാൻ പത്തു മിനിട്ടിൽ എത്തും. എന്റെ കൂടെ വരണം എന്നു പറഞ്ഞു് രണ്ടു ക്ടാങ്ങളും കൂടി ഭയങ്കര വഴക്കു്. അതാ ഇറങ്ങാൻ വൈകിയതു്. ഒരു വെള്ള നിസ്സാൻ സെൻ‌ട്രയാണു കാർ.” നമ്പർ പ്ലേറ്റിന്റെ അവസാനത്തെ മൂന്നു് അക്കങ്ങളും പറഞ്ഞുതന്നു.

ഒരു കാറിന്റെ നമ്പരിന്റെ അവസാനത്തെ മൂന്നു നമ്പരും അതു തന്നെയാവാൻ സാദ്ധ്യത 10 x 10 x 10 = ആയിരത്തിൽ ഒന്നു മാത്രമാണു്. അതൊരു വെള്ളക്കാറും കൂടി ആവാനോ? ഞാൻ ആലോചിച്ചു. മൊത്തം കാറുകളിൽ അഞ്ചിലൊന്നു വെളുപ്പാണെന്നു കേട്ടിട്ടുണ്ടു്. അപ്പോൾ നമ്പരും നിറവും അതു തന്നെയാവാൻ സാദ്ധ്യത അയ്യായിരത്തിൽ ഒന്നു്. അതൊരു നിസ്സാൻ സെൻ‌ട്രയും ആവാനോ? ആകെ കാറുകളിൽ എത്ര ശതമാനമാണു നിസ്സാൻ സെൻ‌ട്ര? ആ, ആർക്കറിയാം! ഒരു ഇരുനൂറിൽ ഒന്നെന്നു ചുമ്മാ കൂട്ടിയാൽ തന്നെ ഞാൻ കാറു തെറ്റി കയറാനുള്ള സാദ്ധ്യത ഒരു മില്യനിൽ ഒന്നാകും. ഇനി അതിലുള്ള ആൾ ഒരു സീരിയൽ കില്ലർ ആകാനും എന്നെ കൊന്നു വഴിയരികിൽ തള്ളാനും സാദ്ധ്യത പിന്നെയും കുറയും. ആ നമ്പരിൽ അവസാനിക്കുന്ന വെളുത്ത നിസ്സാൻ സെൻ‌ട്ര കണ്ടാൽ അതു സിബു തന്നെ ആയിരിക്കും. കയറുക തന്നെ.

കാറിന്റെ പ്രോബബിലിറ്റി ഒരു വഴിക്കാക്കിയപ്പോൾ സിബുവിന്റെ വീടിനെപ്പറ്റി ചിന്തിച്ചു. രണ്ടു കുട്ടികൾ ഉണ്ടെന്നു പറഞ്ഞു. ആണായിരിക്കുമോ പെണ്ണായിരിക്കുമോ? ആദ്യത്തേതു് ആണാവാനും പെണ്ണാവാനും സാദ്ധ്യത 1/2 വീതം. രണ്ടാമത്തേതിനും അതു തന്നെ. അങ്ങനെ നാലു രീതികൾ.

  1. ആദ്യത്തേതു് ആണു്. രണ്ടാമത്തേതും ആണു്. സാദ്ധ്യത: 1/4.
  2. ആദ്യത്തേതു് ആണു്. രണ്ടാമത്തേതു പെണ്ണു്. സാദ്ധ്യത: 1/4.
  3. ആദ്യത്തേതു് പെണ്ണു്. രണ്ടാമത്തേതു് ആണു്. സാദ്ധ്യത: 1/4.
  4. ആദ്യത്തേതു് പെണ്ണു്. രണ്ടാമത്തേതും പെണ്ണു്. സാദ്ധ്യത: 1/4.

അതായതു്, രണ്ടും ആണാവാൻ സാദ്ധ്യത 25%. രണ്ടും പെണ്ണാവാൻ സാദ്ധ്യത 25%. ഒന്നു് ആണും മറ്റേതു പെണ്ണും ആവാൻ സാദ്ധ്യത 50%.

ഇത്രയും ആലോചിച്ച്പ്പോഴേയ്ക്കും ഒരു വെളുത്ത നിസ്സാൻ സെൻ‌ട്ര ഓടിക്കിതച്ചു വന്നു് എന്നെയും കടന്നു പോയി മുന്നിൽ പോയി നിന്നു. അവിടെയുള്ള ഒരു പോലീസുകാരനോടു് അലാസ്ക എയർലൈൻസിൽ വരുന്നവർ എവിടെയാണു് ഇറങ്ങിനിൽക്കുക എന്നു് ഒരുത്തൻ ത്രിശ്ശൂർ ആക്സന്റുള്ള ഇംഗ്ലീഷിൽ ചോദിക്കുന്നതു കേട്ടു. “സംശയമില്ല, ഇതു സിബു തന്നെ” എന്നുറപ്പിച്ചു് ഞാൻ ഓടിച്ചെന്നു. എന്നെക്കൊണ്ടു് ഒരു ശ്ലോകം ചൊല്ലിച്ചു് ഞാൻ ആണെന്നു് ഉറപ്പുവരുത്തിയതിനു ശേഷം സിബു എന്നെ കാറിൽ കയറാൻ സമ്മതിച്ചു.

കാർ വിട്ടപ്പോൾ പുറകിൽ നിന്നു് ഒരു കിളിനാദം, “ഹലോ…”. പുറകിലെ സീറ്റിൽ ഒരു അഞ്ചുവയസ്സുകാരി സുന്ദരിക്കുട്ടി ഇരിക്കുന്നു.

സാദ്ധ്യതകളാകെ തകിടം മറിഞ്ഞു. അപ്പോൾ സിബുവിന്റെ രണ്ടു കുട്ടികളും ആണാവാനുള്ള സാദ്ധ്യത പൂജ്യം.

ഒന്നുകൂടി നോക്കിയപ്പോൾ ഇത്രയേ സാദ്ധ്യതയുള്ളൂ.

  1. ആദ്യത്തേതു് ആണു്. രണ്ടാമത്തേതും ആണു്. സാദ്ധ്യത: 0.
  2. ആദ്യത്തേതു് ആണു്. രണ്ടാമത്തേതു പെണ്ണു്. സാദ്ധ്യത: 1/3.
  3. ആദ്യത്തേതു് പെണ്ണു്. രണ്ടാമത്തേതു് ആണു്. സാദ്ധ്യത: 1/3.
  4. ആദ്യത്തേതു് പെണ്ണു്. രണ്ടാമത്തേതും പെണ്ണു്. സാദ്ധ്യത: 1/3.

അതായതു്, രണ്ടും ആണാവാൻ സാദ്ധ്യത 0. രണ്ടും പെണ്ണാവാൻ സാദ്ധ്യത 33.3333…%. ഒന്നു് ആണും മറ്റേതു പെണ്ണും ആവാൻ സാദ്ധ്യത 66.6666…%

“ഇളയ ക്ടാവു ഭയങ്കര വഴക്കായി പിണങ്ങിപ്പോയി. അതുകൊണ്ടു് ഇവളെ കൊണ്ടുപോന്നു,…” സിബു പറഞ്ഞു. അപ്പോൾ മൂത്തതു പെണ്ണാണു്. പ്രോബബിലിറ്റി പിന്നെയും തകിടം മറിഞ്ഞു.

  1. ആദ്യത്തേതു് ആണു്. രണ്ടാമത്തേതും ആണു്. സാദ്ധ്യത: 0.
  2. ആദ്യത്തേതു് ആണു്. രണ്ടാമത്തേതു പെണ്ണു്. സാദ്ധ്യത: 0.
  3. ആദ്യത്തേതു് പെണ്ണു്. രണ്ടാമത്തേതു് ആണു്. സാദ്ധ്യത: 1/2.
  4. ആദ്യത്തേതു് പെണ്ണു്. രണ്ടാമത്തേതും പെണ്ണു്. സാദ്ധ്യത: 1/2.

അതായതു്, രണ്ടും ആണാവാൻ സാദ്ധ്യത 0. രണ്ടും പെണ്ണാവാൻ സാദ്ധ്യത 50%. ഒന്നു് ആണും മറ്റേതു പെണ്ണും ആവാൻ സാദ്ധ്യത 50%.

സിബുവിന്റെ വീട്ടിൽ എത്തി. രണ്ടാമത്തെ മകൾ വാതിൽക്കൽ തന്നെ നിൽ‌പ്പുണ്ടായിരുന്നു. പിണക്കമൊക്കെ മാറി ചിരിച്ചുകൊണ്ടു്.

ഏറ്റവും പുതിയ പ്രൊബബിലിറ്റി.

  1. ആദ്യത്തേതു് ആണു്. രണ്ടാമത്തേതും ആണു്. സാദ്ധ്യത: 0.
  2. ആദ്യത്തേതു് ആണു്. രണ്ടാമത്തേതു പെണ്ണു്. സാദ്ധ്യത: 0.
  3. ആദ്യത്തേതു് പെണ്ണു്. രണ്ടാമത്തേതു് ആണു്. സാദ്ധ്യത: 0.
  4. ആദ്യത്തേതു് പെണ്ണു്. രണ്ടാമത്തേതും പെണ്ണു്. സാദ്ധ്യത: 1.

അതായതു്, രണ്ടും ആണാവാൻ സാദ്ധ്യത 0%. രണ്ടും പെണ്ണാവാൻ സാദ്ധ്യത 100%. ഒന്നു് ആണും മറ്റേതു പെണ്ണും ആവാൻ സാദ്ധ്യത 0%.

ഒരേ സംഭവത്തിനുള്ള സാദ്ധ്യത ഡാറ്റാ മാറുന്നതനുസരിച്ചു മാറുന്നതു നോക്കണേ!


വെള്ളെഴുത്തിന്റെ കർമ്മണിപ്രയോഗം എന്ന പോസ്റ്റിനെപ്പറ്റി ചില അഭിപ്രായങ്ങൾ:

  • വെള്ളെഴുത്തു് എഴുതുന്നു:

    കള്ളം മാത്രം പറയുന്ന ഗ്രാമത്തില്‍ നിന്ന് ഒരാള്‍, സത്യം മാത്രം പറയുന്ന ഗ്രാമത്തില്‍ നിന്ന് ഒരാള്‍. ഇവര്‍ക്കു നടുവില്‍ നിന്നുകൊണ്ട്, കള്ളം പറയുന്നതാര് സത്യം പറയുന്നതാര് എന്നൊരു പിടിയുമില്ലാത്ത കാസ്പര്‍, കള്ളം പറയുന്നവരുടെ ഗ്രാമം ഏതാണെന്ന് കണ്ടുപിടിക്കണം. ഒരേയൊരു ചോദ്യമേ പാടുള്ളൂ. മുന്നില്‍ കാണുന്ന ഒരാളോട്, കള്ളന്മാരുടെ ഗ്രാമം ഏതാണെന്നു ചോദിച്ചാല്‍ അയാള്‍ പറഞ്ഞേക്കാവുന്ന ഉത്തരത്തിന്റെ വിരുദ്ധമായ ഗ്രാമമായിരിക്കും കള്ളന്മാരുടെ ഗ്രാമം. ഈ വിഷമപ്രശ്നത്തിന് അങ്ങനെയൊരു ഉത്തരം മാത്രമേ ഉള്ളൂ എന്നാണ് പ്രഫസറുടെ നിലപാട്. പ്രഫസര്‍ പറയുന്നത്, തുടര്‍ച്ചയായ രണ്ടു നിഷേധങ്ങള്‍ (നെഗറ്റീവുകള്‍)‍, ഒരാളിന്റെ ശരിയായ വ്യക്തിത്വത്തെ വെളിപ്പെടുത്താന്‍ സഹായിക്കുമെന്നാണ്.

    ഇതു തെറ്റാണു്. സത്യം പറയുന്ന ആളോടാണു് ഇതു ചോദിക്കുന്നതെങ്കിൽ ശരിയായ ഉത്തരം തന്നെയായിരിക്കും കിട്ടുന്നതു്.

    ഇതിനു് പല ഉത്തരങ്ങളുമുണ്ടു്. ഒരെണ്ണം ഇതാ: ഒരു ഗ്രാമത്തിലേയ്ക്കുള്ള വഴി ചൂണ്ടിക്കാണിച്ചുകൊണ്ടു് ഒരാളോടു ചോദിക്കുക: “ഇതു സത്യം പറയുന്നവരുടെ ഗ്രാമത്തിലേക്കുള്ള വഴിയാണോ എന്നു് മറ്റേ ആളോടു ചോദിച്ചാൽ അയാൾ എന്തു പറയും?” കിട്ടുന്ന ഉത്തരത്തിനു നേരേ എതിരായിരിക്കും സത്യം. True and False എന്നതും False and True എന്നതും False തന്നെയായിരിക്കും എന്ന boolean algebra-യിലെ തത്ത്വമാണു് ഇവിടെ ഉപയോഗിക്കുന്നതു്.

    നേരേ മറിച്ചു്, രണ്ടു നെഗേഷൻ True ആകുന്നതിനു് ഉദാഹരണം വേണമെങ്കിൽ “ഇതു സത്യഗ്രാമത്തിലേക്കുള്ള വഴിയാണോ എന്നു ചോദിച്ചാൽ സാധാരണ നീ എന്താണു പറയാറുള്ളതു്?” എന്നോ മറ്റോ ചോദിക്കണം. രണ്ടു ഗ്രാമത്തിൽ നിന്നുള്ള ഒരു പറ്റം ആളുകളെയോ ഏതു ഗ്രാമത്തിൽ നിന്നു് എന്നറിയാത്ത ഒരാളെ മാത്രമോ കണ്ടാൽ ഈ ചോദ്യം ചോദിക്കാം.

  • വെള്ളെഴുത്തു് എഴുതുന്നു:

    ഈ കഥയ്ക്കുള്ള മറ്റൊരു വെര്‍ഷനില്‍ കള്ളം പറയുന്നവനെയും സത്യം മാത്രം പറയുന്നവനെയും കൂടാതെ കള്ളവും സത്യവും മാറിമാറി പറയുന്ന മറ്റൊരാളുകൂടി കടന്നു വരുന്നതു കാണാം. ജീവിതം എന്ന പ്രഹേളികയുടെ ഉത്തരം തന്നെ നേരെ കണ്ടെത്താന്‍ വയ്യാതെ അട്ടം നോക്കുന്നവന്റെ കുഴങ്ങുന്നവന്റെ ബാദ്ധ്യത വര്‍ദ്ധിപ്പിക്കാനായിട്ട് !

    വെള്ളെഴുത്തിനെ എന്റെ ഹ്രീഹ്ലാദവും ജഞ്ജലിപ്പും എന്ന പോസ്റ്റു വായിക്കാൻ ക്ഷണിക്കുന്നു. Boolean algebra-യിലെ xor എന്ന ക്രിയ കൊണ്ടു് അറിയേണ്ടാ‍ത്തതായ ഒരു ചരത്തെ ഒഴിവാക്കുന്ന ടെക്നിക്ക് ആണു് അതിൽ.

  • വെള്ളെഴുത്തു് എഴുതുന്നു:

    പക്ഷേ കാസ്പറിനു പറയാന്‍ മറ്റൊരുത്തരമുണ്ടായിരുന്നു. വളരെ ലളിതമായത്. വരുന്നവനോട് ‘നീ മരത്തവളയാണോ’ എന്നു ചോദിക്കുക. അവന്‍ ‘അതെ’ എന്നു പറയുകയാണെങ്കില്‍ (കള്ളം മാത്രം പറയുന്നവന് മറ്റെന്തു പറ്റും?) അവന്‍ കള്ളന്മാരുടെ ഗ്രാമത്തില്‍ നിന്നാണെന്ന് ഉറപ്പിക്കാമല്ലോ.

    ഉറപ്പിക്കാം. പക്ഷേ അയാൾ ഏതു ഗ്രാമത്തിലേതാണു് എന്നതല്ല നമ്മുടെ പ്രശ്നം. ഏതാണു സത്യഗ്രാമത്തിലേയ്ക്കുള്ള വഴി എന്നതാണു്. ഈ മരത്തവളച്ചോദ്യം വേണ്ടാത്ത ചോദ്യത്തിന്റെ ഉത്തരത്തെയാണു തേടുന്നതു്.

  • “ഒരു കൂട്ടത്തില്‍ 98 ശതമാനവും ചിന്തിക്കുന്നത് ഒരേ തരത്തിലായിരിക്കും…” എന്നു തുടങ്ങുന്ന ഖണ്ഡികയ്ക്കു് ഒരു സ്പെഷ്യൽ സല്യൂട്ട്!