January 2009

വ്യക്തിഹത്യയുടെ പ്രശ്നങ്ങൾ

Sreejith-Cricket‍മനുഷ്യനിപ്പോൾ മാനം മര്യാദയ്ക്കു വ്യക്തിഹത്യ ചെയ്യാനും പറ്റില്ലത്രേ!

ആളുകളെ അധിക്ഷേപിക്കൽ, ഹേറ്റ് സ്പീച്ച്, ആക്ഷേപഹാസ്യം ആദിയായ കലാപരിപാടികൾ ബ്ലോഗിൽ ചെയ്താൽ ഐപ്പീസിയോ ഐട്ടിനിയമമോ 67 എന്നൊരു സാധനം ഉപയോഗിച്ചു കേസു കൊടുക്കുമത്രേ!

ഇതു പണ്ടേ കണ്ടതുകൊണ്ടല്ലേ ഞാൻ വ്യക്തിഹത്യയ്ക്കു് ഈ ബ്ലോഗ് ഉപയോഗിക്കാത്തതു്. അതിനു വേണ്ടി തുടങ്ങിയ ബ്ലോഗാണു് ബുദ്ധിപരീക്ഷ.

മേൽ‌പ്പറഞ്ഞ ഐപ്പീസി/ഐട്ടി നിയമത്തിലൊരു ലൂപ്പ്‌ഹോളുണ്ടു്. അതായതു്, “ഗണിതം, ധനതത്ത്വശാസ്ത്രം, വൈരുദ്ധ്യാത്മകഭൌതികവാദം, പക്ഷിശാസ്ത്രം, കോടാങ്കിശാസ്ത്രം, ജ്യോതിഷം തുടങ്ങിയ ശാസ്ത്രങ്ങളിലെ പ്രഹേളികകൾ അനാവരണം ചെയ്യുന്ന കൃതികളിലുള്ള വ്യക്തി-സമൂഹ-ഹത്യകൾ ഈ നിയമത്തിന്റെ പരിധിയിൽ വരികില്ല” എന്നു്.

അതുകൊണ്ടാണു് ഞാൻ ബുദ്ധിപരീക്ഷ എന്ന ബ്ലോഗ് തുടങ്ങിയതു്. പുറത്തു നിന്നു നോക്കിയാൽ പസ്സിൽ ബ്ലോഗാണു്. അകത്തു കടന്നാലോ, വിശാലമായ വ്യക്തിഹത്യയും.

വിശാലമനസ്കനെ വധിച്ചു കൊണ്ടായിരുന്നു തുടക്കം – എടത്താടൻ മുത്തപ്പനും ചെക്കിലെ പിശകും. പിന്നെ കലേഷ്, സിദ്ധാർത്ഥൻ, ദിൽബാസുരൻ, ദേവൻ, കുറുമാൻ, വിശാലൻ, തറവാടി, വല്യമ്മായി തുടങ്ങി യൂയേയിക്കാരെ വധിച്ചുകൊണ്ടുള്ള യു. എ. ഇ. മീറ്റും മണ്ണെണ്ണയും. വക്കാരിയെയും ചിത്രകാരനെയും ഒക്കെ വധിക്കാൻ പോയിട്ടു് അവസാനം ഷിജു അലക്സിനെ കൊന്നു കൊലവിളിച്ച ഹ്രീഹ്ലാദവും ജഞ്ജലിപ്പും ആയിരുന്നു ഈ സിരീസിലെ അവസാനത്തെ പോസ്റ്റ്.

നിങ്ങൾ ഇതുവരെ അതു വായിച്ചിട്ടില്ലെങ്കിൽ, നിങ്ങൾക്കു പസ്സിലുകളോ വ്യക്തിഹത്യയോ രണ്ടുമോ ഇഷ്ടമാണെങ്കിൽ, വായിക്കുക. ഇൻഡക്സ് ഇവിടെ ഉണ്ടു്.

അവിടെ കമന്റുകൾ മോഡറേറ്റഡ് ആണു്. അയച്ച ഉത്തരങ്ങൾ ആരും കാണാതിരിക്കാനാണതു്. ഉത്തരവും അയച്ചവരുടെ വിവരങ്ങളും പിന്നീടു പ്രസിദ്ധീകരിക്കും.


ഈ ബ്ലോഗിലെ ഏറ്റവും പുതിയ പോസ്റ്റാണു് ക്രിക്കറ്റ് മണ്ടത്തരങ്ങൾ. ഈ വരുന്ന മുപ്പത്തൊന്നാം തീയതി വിവാഹിതനാകുന്ന ശ്രീജിത്തിനു് എന്റെ സമ്മാനം. എഴുതാൻ തുടങ്ങിയിട്ടു് ഒരു കൊല്ലത്തിലധികമായെങ്കിലും ശ്രീജിത്ത് അമേരിക്കയിൽ നിന്നു് ഇന്ത്യയിലേക്കു പ്ലെയിനിൽ ഇരിക്കുന്ന സമയത്താണു് ഇതു പോസ്റ്റ് ചെയ്തതു്. ശ്രീജിത്ത് കൂടാതെ ആദിത്യൻ, നളൻ, തഥാഗതൻ, ചന്ത്രക്കാറൻ, കൊച്ചുത്രേസ്യ, മഴനൂലുകൾ, ജ്യോതിട്ടീച്ചർ എന്നിവരാണു് ഇതിലെ കഥാപാത്രങ്ങൾ. ഇനി ഇങ്ങനെ കൊല്ലപ്പെടാൻ സന്നദ്ധതയുള്ള ബാംഗ്ലൂർ ബ്ലോഗേഴ്സ് ബാക്കിയുണ്ടെങ്കിൽ ക്യൂവിൽ നിന്നു ടോക്കൻ എടുക്കേണ്ടതാണു്.


90% തീർന്നിരിക്കുന്ന പോസ്റ്റുകൾ തീർത്തു പബ്ലിഷ് ചെയ്യുക എന്ന പരിപാടിയുടെ ഭാഗമായി പ്രസിദ്ധീകരിച്ചതാണു് ഈ പോസ്റ്റ്.

ഒരു കൊല്ലം മുമ്പു്, കൃത്യമായി പറഞ്ഞാൽ 2008 ജനുവരി 16-നു് ഞാൻ കാർട്ടൂണിസ്റ്റ് സജ്ജീവിനോടു ഗൂഗിൾ ചാറ്റിൽ ചോദിച്ചു:

“ഗുരോ, ശ്രീജിത്ത് ക്രിക്കറ്റു കളിക്കുന്ന ഒരു പടം വരച്ചുതരാമോ? ഒരു പോസ്റ്റിൽ ഇടാനാണു്.”

കൃത്യം ഇരുപതു മിനിട്ടു കഴിഞ്ഞപ്പോൾ പടം റെഡി.

അതിനു ശേഷം ഒരു പത്തു തവണയെങ്കിലും ആ പോസ്റ്റു പബ്ലിഷ് ചെയ്തോ എന്നു് സജ്ജീവ് ചോദിച്ചിട്ടുണ്ടു്. എന്റെ മടി മൂലം ഇതുവരെ അതു നടന്നില്ല. കുറെക്കഴിഞ്ഞു്, എന്നാൽ എന്റെ പടം തിരിച്ചു തരൂ എന്നു വിലപിച്ചു. ഞാൻ കൊടുത്തില്ല.

കാർട്ടൂണിസ്റ്റ് സജ്ജീവിനു് ആയിരം നന്ദി.

ക്രിക്കറ്റ്, ബാംഗ്ലൂരിന്റെ ഭൂമിശാസ്ത്രം എന്നിവയെപ്പറ്റി ഒരു വിവരവുമില്ലാത്ത (ബൌളിംഗ് ആവറേജിനെ റൺ റേറ്റ് എന്നായിരുന്നു ഞാൻ എഴുതിയിരുന്നതു്!) എന്നെ ഈ പോസ്റ്റിലേയ്ക്കാവശ്യമായ വിവരങ്ങൾ തന്നു സഹായിക്കുകയും പോസ്റ്റ് തിരുത്തിത്തരുകയും ചെയ്ത ചില മഹാവ്യക്തികളുണ്ടു്. കേസ് വന്നാൽ അവർക്കും പ്രശ്നമാകും എന്നുള്ളതു കൊണ്ടു് ആരുടെയും പേരു പ്രസിദ്ധീകരിക്കുന്നില്ല. എല്ലാവർക്കും നന്ദി.

നര്‍മ്മം
പ്രശ്നങ്ങള്‍ (Problems)
വ്യക്തിഹത്യ

Comments (10)

Permalink

അക്കുത്തിക്കുത്തുകളിയും ഗണിതശാസ്ത്രവും

അക്കുത്തിക്കുത്തുകളി ഒരിക്കലെങ്കിലും കളിച്ചിട്ടില്ലാത്തവർ ചുരുക്കമായിരിക്കും. ഇതു കേരളത്തിൽ മാത്രം ഒതുങ്ങി നിൽക്കുന്ന കളിയല്ല. ലോകത്തിൽ മിക്ക സ്ഥലങ്ങളിലും ഇതിന്റെ വകഭേദങ്ങൾ റാൻഡമായി ഒരാളെ തിരഞ്ഞെടുക്കാൻ കുട്ടികൾ ഉപയോഗിക്കുന്നുണ്ടു്.

ഇസ്രയേലിൽ റഷ്യൻ ജൂതക്കുട്ടികൾ ഈ കളി കളിക്കുന്നതു കണ്ടിട്ടു് ഡാലി ഫോട്ടോ സഹിതം ഇട്ട കുട്ടികളികൾ (കുട്ടികളികൾ അല്ല ഡാലീ, കുട്ടിക്കളികൾ. ദ്വിത്വസന്ധി!) ആണു് മലയാളം ബ്ലോഗിൽ ഈ കളിയെപ്പറ്റി വന്ന ആദ്യത്തെ വിശദമായ പോസ്റ്റ്. അതിനു കിട്ടിയ കമന്റുകളിൽ നിന്നു പ്രചോദിതയായ ഡാലി പിന്നീടു് ‘അത്തള പിത്തള തവളാച്ചി’ കളികൾ എന്നും ഒരു പോസ്റ്റെഴുതി. പിന്നീടു മഷിത്തണ്ടിൽ വന്ന അത്തള പിത്തള തവളാച്ചിയും വിക്കിച്ചൊല്ലുകളിൽ ചേർക്കാനുള്ള അനൂപിന്റെ നിർദ്ദേശവും ഇതുപോലെയുള്ള വായ്ത്താരികൾ ധാരാളം നൽകി. എല്ലാവർക്കും നന്ദി.

ഡാലിയുടെ ആദ്യത്തെ പോസ്റ്റിനു് രണ്ടു മാസം മുമ്പു് എഴുതിയ പോസ്റ്റാണു് ഇതു്. ഡാലിയുടെ പോസ്റ്റുകളിലെയും അവയുടെ കമന്റുകളിലെയും വിവരങ്ങൾ ചേർത്തു് പോസ്റ്റ് അപ്‌ഡേറ്റ് ചെയ്യാം എന്നു കരുതി നീട്ടിവെച്ചു. ആ നീട്ടിവെയ്പ്പു് ഒന്നരക്കൊല്ലത്തിലധികം നീളും എന്നു കരുതിയില്ല.

ഇതിൽ ആദ്യം ചേർത്ത വായ്ത്താരികൾ കുറേപ്പേർക്കു് ഈമെയിലയച്ചു കിട്ടിയ മറുപടികളിൽ നിന്നാണു ശേഖരിച്ചതു്. ഇതിലെ വായ്ത്താരികള്‍ അയച്ചു തന്ന അനില്‍, കണ്ണൂസ്, കല്യാണി, തുളസി, ദില്‍ബാസുരന്‍, പച്ചാളം, ബിന്ദു, ബിരിയാണിക്കുട്ടി, മഞ്ജിത്ത്, രാജേഷ് വര്‍മ്മ, ശ്രീജിത്ത്, സന്തോഷ്, സിദ്ധാര്‍ത്ഥന്‍, സിബു എന്നിവര്‍ക്കു നന്ദി. (ഇവരൊക്കെ ഇതു മറന്നുപോയിട്ടുണ്ടാവും. 2007 ഫെബ്രുവരിയിലാണു സംഭവം!)


സൂക്ഷിച്ചു നോക്കിയാൽ ഈ കളിക്കുപയോഗിക്കുന്ന വായ്ത്താരികൾക്കെല്ലാം ഒരു പ്രത്യേകതയുണ്ടെന്നു കാണാം.

കുറേ കുട്ടികൾ തങ്ങളുടെ രണ്ടു കൈകളും (എണ്ണുന്ന ആൾ മാത്രം ഒരു കൈ) തറയിൽ കമഴ്ത്തി വെച്ചാണു കളി തുടങ്ങുക. ഏതെങ്കിലും ഒരു കൈയിൽ നിന്നു് എണ്ണിത്തുടങ്ങും. അവസാനത്തെ വാക്കു് നിൽക്കുന്ന കൈ മലർത്തിവെയ്ക്കും. മലർന്നിരിക്കുന്ന കൈയിലാണു വാക്കെത്തുന്നതെങ്കിൽ ആ കൈ കളിയിൽ നിന്നു മാറ്റും. അടുത്ത എണ്ണം തുടങ്ങുന്നതു് ആ കൈയുടെ പിന്നിലുള്ള കൈയിലാണു്. കളിയിൽ നിന്നു മാറിയ കൈകളെ പിന്നീടു കളിയിൽ ചേർക്കില്ല. അങ്ങനെ അവസാനം ഒരു കൈ ബാക്കി വരും.

ഈ കളി കളിച്ചിട്ടുള്ളവരെല്ലാം ഒരു കാര്യം ശ്രദ്ധിച്ചിട്ടുണ്ടായിരിക്കും. എല്ലാ കൈകളും മലർന്നതിനു ശേഷമേ സാധാരണയായി ഒരു കൈ കളിക്കു പുറത്തു പോകാറുള്ളൂ. മറ്റൊരു വിധത്തിൽ പറഞ്ഞാൽ, എല്ലാ കൈകളും മലർക്കുന്നതു വരെ വായ്ത്താരി തീരുന്നതു് ഒരു കമഴ്ന്ന കൈയിൽ ആയിരിക്കും. കുട്ടികളുടെ(കൈകളുടെ) എണ്ണം എത്രയായാലും ഇതു മിക്കപ്പോഴും ശരിയായിരിക്കും.

ഈ പ്രത്യേകത മൂലം ഇത്തരത്തിലുള്ള വായ്ത്താരികൾ ഏകദേശം റാൻഡമായി, എന്നാൽ എല്ലാവർക്കും തുല്യമായ അവസരം കൊടുത്തു്, ഒരാളെ തിരഞ്ഞെടുക്കാനും ഉപയോഗിക്കാം. ഉദാഹരണമായി, ഒരു കൂട്ടായ്മയിൽ അടുത്ത പാട്ടു പാടേണ്ടതു് ആരാണെന്നു തീരുമാനിക്കാൻ. എല്ലാവരും പാടിക്കഴിഞ്ഞേ ആദ്യം പാടിയ ആൾക്കു വീണ്ടും അവസരം ലഭിക്കൂ.

ഇതെങ്ങനെ സംഭവിക്കുന്നു എന്നു് ആരെങ്കിലും ആലോചിച്ചിട്ടുണ്ടോ? ഇതിന്റെ ഉള്ളുകള്ളി മനസ്സിലാക്കാൻ അല്പം നമ്പർ തിയറിയുടെ സഹായം വേണ്ടി വരും.

ഇതു സംഭവിക്കുന്നതു് വായ്ത്താരിയിലെ വാക്കുകളുടെ എണ്ണവും കുട്ടികളുടെ എണ്ണവും തമ്മിൽ ആപേക്ഷിക-അഭാജ്യം (Relatively prime/Coprime) ആകുമ്പോഴാണു്.

രണ്ടു സംഖ്യകൾക്കു് ഒന്നിനു മുകളിൽ പൊതുഘടകം ഇല്ലാതെ വരുമ്പോഴാണു് അവ ആപേക്ഷിക-അഭാജ്യങ്ങൾ ആകുന്നതു്. 8, 15 എന്നിവ ആപേക്ഷിക-അഭാജ്യങ്ങൾ ആണു്. (8 = 2 x 2 x 2, 15 = 3 x 5.) എല്ലാ അഭാജ്യസംഖ്യകളും (Prime numbers) പരസ്പരം ആപേക്ഷിക-അഭാജ്യങ്ങളാണു്.

ഉദാഹരണത്തിനു്, ഒരു വായ്ത്താരിയ്ക്കു് 9 വാക്കുകളുണ്ടെന്നിരിക്കട്ടേ. ഏഴു കുട്ടികൾ/കൈകൾ ഉള്ള ഒരു കളിയിൽ ആദ്യം രണ്ടാമത്തെ കൈ മലർക്കും. പിന്നെ 4, 6, 1, 3, 5, 7 എന്നീ കൈകളും. ഒമ്പതും ഏഴും ആപേക്ഷികമായി അഭാജ്യങ്ങളായതു കൊണ്ടാണു് ഇതു്. അതേ സമയം, ആറു കുട്ടികളേയുള്ളെങ്കിൽ 3, 6 എന്നീ കൈകൾ മലർന്നതിനു ശേഷം ബാക്കി കൈകൾ മലർത്തുന്നതിനു മുമ്പു് വീണ്ടും മൂന്നിൽത്തന്നെ എത്തും. ഒമ്പതും ആറും ആപേക്ഷികമായി അഭാജ്യങ്ങളല്ലാത്തതു കൊണ്ടാണു് (രണ്ടിനെയും 3 കൊണ്ടു ഹരിക്കാം.) ഇതു സംഭവിക്കുന്നതു്.

ഇനി, കുട്ടികളുടെ എണ്ണം എത്രയായാലും ഇതു സംഭവിക്കാൻ എന്താണു വഴി? മിക്കവാറും എല്ലാ സംഖ്യകളോടും ആപേക്ഷികമായി അഭാജ്യമായ ഒരു സംഖ്യ വായ്ത്താരികളുടെ എണ്ണമായി ഉപയോഗിച്ചാൽ മതി. അതിനു് ഏറ്റവും നല്ല വഴി ഒരു അഭാജ്യസംഖ്യ (Prime number) തന്നെ ഉപയോഗിക്കുന്നതാണു്.

പറഞ്ഞു വന്നതു്, അക്കുത്തിക്കുത്തുകളിക്കുപയോഗിക്കുന്ന എല്ലാ നല്ല വായ്ത്താരികൾക്കും ഉള്ള ഭാഗങ്ങളുടെ എണ്ണം അഭാജ്യസംഖ്യകൾ ആയിരിക്കും എന്നാണു്. അഭാജ്യസംഖ്യകൾ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53,… എന്നിങ്ങനെ പോകുന്നു. വായ്ത്താരികളിലെ ഖണ്ഡങ്ങളുടെ എണ്ണം ഇവയിൽ ഒരെണ്ണമായിരിക്കും.

ആവണമെന്നു നിർബന്ധമില്ല. മിക്കവാറും സംഖ്യകളോടു പ്രശ്നമില്ലാതിരുന്നാൽ മതി. ഉദാഹരണമായി 25 ഒരു അഭാജ്യമല്ലെങ്കിലും മൊത്തം സംഖ്യകളിൽ അഞ്ചിലൊന്നിനോടേ അതിനു പ്രശ്നമുള്ളൂ എന്നതുകൊണ്ടു് അത്ര ഖണ്ഡങ്ങളുള്ള വായ്ത്താരി ഉപയോഗിക്കാം.

അതുപോലെ, കളിയനുസരിച്ചു് ഇതു മാറാം. ഉദാഹരണമായി അക്കുത്തിക്കുത്തു കളി തുടങ്ങുമ്പോൾ കയ്യുകളുടെ എണ്ണം ഒറ്റസംഖ്യയാണു്. (എണ്ണുന്ന ആളിന്റെ ഒരു കൈയേ എണ്ണുന്നുള്ളൂ.) എല്ലാ കൈയും മലർന്നതിനു ശേഷം ഈ പ്രത്യേകതയുടെ ആവശ്യവുമില്ല. അതിനാൽ അതിന്റെ വായ്ത്താരി ഇരട്ടസംഖ്യയാവുന്നതിൽ പ്രശ്നമില്ല. സത്യത്തിൽ 2np (ഇവിടെ p ഒരു അഭാജ്യസംഖ്യ, n ഏതെങ്കിലും സംഖ്യ) എന്ന രീതിയിലുള്ള ഏതു സംഖ്യയും ഇവിടെ ഉപയോഗിക്കാം. 14, 28 തുടങ്ങിയവയ്ക്കു കുഴപ്പമില്ല എന്നർത്ഥം.)

വിശ്വസിക്കാൻ കഴിയുന്നില്ല, അല്ലേ? നമുക്കറിയാവുന്ന വായ്ത്താരികളൊക്കെ ഒന്നു പരിശോധിച്ചു നോക്കാം. നിർത്തുന്ന ഭാഗങ്ങൾ ഒരു വര (-) കൊണ്ടു കാണിച്ചിരിക്കുന്നു. ഖണ്ഡങ്ങളുടെ എണ്ണം ബ്രായ്ക്കറ്റിലും.

  1. അത്തിള്‍-ഇത്തിള്‍-പറങ്കി-പ്പാള-ചട്ടുമ-ചിട്ടുമ-ചള്‍ (7)
  2. അത്തിളി-മുത്തളി-പറങ്കീ-താളി-സെറ്റുമ്മ-സെറ്റുമ്മ-സാ (7)
    ഇതു മുകളില്‍ കൊടുത്തതു തന്നെയാണെന്നു തോന്നുന്നു.
  3. അക്കു-ത്തിക്കു-ത്താനവ-രുമ്പം-
    കല്ലേ-ക്കുത്ത് ക-രിങ്കു-ത്ത്-
    അക്കര-നിക്കണ-ചക്കി-പ്പെണ്ണിന്റെ-
    കയ്യോ-കാലോ-അടിച്ചൊ-ടിച്ച് -വാ. (17)
  4. അക്കു-ത്തിക്കു-ത്താന വ-രമ്പേല്‍-
    കല്ലേ-ക്കുത്തു ക-ടുംകു-ത്ത്‌
    ചീപ്പു-വെള്ളം-താറാ-വെള്ളം-
    താറാ-മ്മക്കടെ-കയ്യേ-ലൊരു-
    വാങ്ക്‌ (17)
  5. അത്തള-പിത്തള-തവളാ-ച്ചി-
    മുക്കിലി-രിക്കണ -ചൂലാ-പ്പ്‌-
    മറിയം-വന്ന് വി-ളക്കൂ-തി
    ഉണ്ടോ-മാണി-സാറാ-പീറാ-കോട്ട്‌. (17)
  6. അരിപ്പോ-തിരിപ്പോ-
    പന്ത്ര-ണ്ടാനേം-
    ചക്കിട്ട-പൊക്കിട്ട-
    പതിനാം-വള്ളികെ-ന്തൂമ്പു?-
    മുരിക്കിന്‍ -പു (11)
  7. മുരിക്കീലൊ-രിക്കി കെ-ടന്നോ-നെ-
    കൊങ്ങാ-യെണ്ണ കു-ടിച്ചോ-നെ-
    അത്തര-മുള്ളൊരു -മാട-പ്രാ-വിന്റെ-
    കയ്യൊ-കാലോ-ചെത്തി-കൂട്ട് മ-ടംകൂ-ട്ട് (19)
  8. പരിപ്പു -കുത്തി- പാച്ചോ-റാക്കി
    ഞാനു-മുണ്ട് -സീതേ-മുണ്ട് –
    സീ‍തേ-ടപ്പന്റെ- പേരെന്ത് (11)
  9. inki -pinki -ponki-
    uncle -has a -donkey-
    donkey – died -uncle – cried-
    inki -pinki -ponki (13)
  10. uncle – called the – doctor
    doctor -called the – nurse
    nusre – called the – ambu – lance
    A – B – C (13)
  11. Eena, – meena, – mina, – mo, –
    Catch a – tiger – by his – toe. –
    If – he – squeals, – let ‘im – go, –
    Eena, – meena, – mina, – mo. (17)

    ഈ പാട്ടിനു് അതിഭീകരമായ ഒരു ചരിത്രമുണ്ടു്.

    Eena, meena, mina, mo,
    Catch a nigger by his toe;
    If he squeals, let him go,
    Eena, meena, mina, moe

    എന്നായിരുന്നു ഇതിന്റെ ആദ്യത്തെ രൂപം.

  12. Ring – around the – ro – sey-
    A pocket – full of – po – sies –
    Ashes, – ashes –
    We all – fall – down (13)
  13. അഡുപ്പും – തിഡുപ്പും –
    പാദര-പ്പള്ളില്‍-
    ബാങ്ക്‌ – കൊടുക്കും –
    ഏനുപ്പു? (7)
  14. ഞാ-നൊ-രു-മ-നു-ഷ്യ-നെ- ക-ണ്ടു
    അ-യാ-ളു-ടെ-നി-റം-എ-ന്ത്?
    പ-ച്ച. (17)
  15. ഒന്ന്, – രണ്ട്, – മൂന്ന്, – നാല് –
    അഞ്ച്, – ആറു്, – ഏഴ്, – എട്ട് –
    എട്ടും – മുട്ടും – താമര – മൊട്ടും –
    വടക്കോ-ട്ടുള്ള – അച്ഛനു-മമ്മയും
    പൊ-ക്കോ-ട്ടെ. (19)
  16. അത്തിള്‍ – ഇത്തിള്‍ – ബെന്തി-പ്പൂ
    സ്വര്‍ഗ – രാജാ – പിച്ചി-പ്പൂ
    ബ്ലാം – ബ്ലീം – ബ്ലൂം (11)
  17. അരിപ്പോ – തിരിപ്പോ – തോരണി – മംഗലം –
    പരിപ്പൂ – പന്ത്ര – ണ്ടാനേം – കുതിരേം –
    കുളിച്ച് – ജപിച്ച് – വരുമ്പം –
    എന്തമ്പൂ? മുരിക്കുമ്പൂ! (13)
  18. മുരിക്കി – ചെരിക്കി – കെടന്നോ – ളേ
    അണ്ണാ-യെണ്ണ കു-ടിച്ചോ – ളേ
    അക്കര – നിക്കണ – മാട – പ്രാവിന്റെ –
    കയ്യോ – കാ‍ലോ – രണ്ടാ – ലൊന്ന് –
    കൊത്തി – ച്ചെത്തി –
    മടം കാട്ട് (19)
  19. അരിപ്പ – തരിപ്പ – താലി – മംഗലം –
    പരിപ്പു – കുത്തി – പഞ്ചാ -രെട്ട്
    ഞാനു – മെന്റെ – ചിങ്കിരി – പാപ്പന്റെ
    പേരെന്ത്??? (13)

അക്കുത്തിക്കുത്തുകളിയിൽ ഓരോരുത്തരായി പുറത്തായി അവസാനം ശേഷിക്കുന്ന ആൾ ജയിക്കുമല്ലോ. എവിടെ നിന്നാൽ ഈ അവസാനത്തെ ആൾ ആകാം എന്നു മുൻ‌കൂട്ടി അറിയാമെങ്കിൽ എപ്പോഴും ജയിക്കാമല്ലോ. അതിനു് എന്തെങ്കിലും വഴിയുണ്ടോ?

വാക്കുകളുടെ എണ്ണം 2 ആയാലുള്ള (അതായതു്, ഒന്നിടവിട്ട ആളുകളെ ഒഴിവാക്കിയാൽ) സ്ഥിതിയെപ്പറ്റി ധാരാളം പഠനങ്ങൾ ഉണ്ടായിട്ടുണ്ടു്. കുട്ടികളുടെ എണ്ണം 1, 2, 3, 4, …. എന്നിങ്ങനെ ആയാൽ അവസാനം അവശേഷിക്കുന്ന കുട്ടിയുടെ നമ്പർ (ഇവിടെ ഒന്നു തൊട്ടാണു് എണ്ണുന്നതു്) 1, 1, 3, 1, 3, 5, 1, 3, 5, 7, 1, 3, 5, 7, 9, …. എന്നിങ്ങനെ ആയിരിക്കും.

ഇതു കണ്ടുപിടിക്കാൻ മറ്റൊരു എളുപ്പവഴിയുണ്ടു്. കുട്ടികളുടെ എണ്ണത്തെ ദ്വയാങ്കരീതിയിൽ (binary system) എഴുതുക. അങ്ങനെ കിട്ടുന്ന ബിറ്റുകളെ ഇടത്തേയ്ക്കു് ഒരു സ്ഥാനം ചാക്രികമായി നീക്കുക (cyclic bit shift). കിട്ടുന്ന സംഖ്യയായിരിക്കും ഒടുക്കം വരുന്ന കുട്ടിയുടെ നമ്പർ.

ഉദാഹരണമായി, നമ്മുടെ വായ്ത്താരി “അടി, ഇടി” എന്നാണെന്നിരിക്കട്ടേ. “ഇടി” എന്നു പറഞ്ഞു തൊടുന്ന ആൾ പുറത്താകും. ഈ കളി പതിനായിരം കുട്ടികൾ കളിച്ചാൽ ആരു് അവസാനം അവശേഷിക്കും?

10000 എന്ന സംഖ്യ ബൈനറിയിൽ എഴുതിയാൽ 10011100010000. ഇടത്തേയ്ക്കു് ഒരു സ്ഥാനം സൈക്ലിക് ബിറ്റ്-ഷിഫ്റ്റ് നടത്തിയാൽ ഏറ്റവും ഇടത്തേ 1 ഏറ്റവും വലത്തു പോകും. അതായതു് 00111000100001 അഥവാ 111000100001. ഇതു് 3617 എന്ന ദശാംശസംഖ്യയ്ക്കു തുല്യമായ ദ്വയാങ്കസംഖ്യയാണു്. അതായതു് ഈ കളിയിൽ 3617-)ം സ്ഥാനത്തു നിൽക്കുന്ന കുട്ടിയായിരിക്കും ജയിക്കുക.


വായ്ത്താരിയിലെ വാക്കുകളുടെ എണ്ണം എത്രയായാലും ഇതു കണക്കുകൂട്ടാൻ ഇതുപോലെ സരളമായ ഒരു രീതി ഇതു വരെ ആരും കണ്ടുപിടിച്ചിട്ടില്ല.

കുട്ടികളുടെ എണ്ണം k എന്നും വായ്ത്താരിയിലെ വാക്കുകളുടെ എണ്ണം v എന്നും ഇരിക്കട്ടേ. അപ്പോൾ ഒന്നു തൊട്ടെണ്ണിയാൽ എന്ന കുട്ടി ആദ്യം പുറത്താകും. എന്ന കുട്ടി രണ്ടാമതും. ഇങ്ങനെ അവശേഷിക്കുന്ന ആളെയാണു് കണ്ടുപിടിക്കേണ്ടതു്. നമുക്കു് അയാളുടെ നമ്പറിനെ എന്നു വിളിക്കാം.

ഇതു കണ്ടുപിടിക്കാനുള്ള സൂത്രവാക്യം (formula) ഒന്നും ആരും ഇതുവരെ കണ്ടുപിടിച്ചിട്ടില്ല. മറ്റൊരു വിധത്തിൽ പറഞ്ഞാൽ, constant time algorithms ഒന്നുമില്ല.

നമ്മൾ സാധാരണ ചെയ്യുന്നതുപോലെ ചെയ്തുനോക്കാം. എണ്ണിത്തന്നെ. എണ്ണി ഓരോരുത്തരെ ഒഴിവാക്കുന്നതിനു പകരം ഓരോ റൌണ്ടിലും ഒഴിവാക്കേണ്ടവരെ ഒന്നിച്ചു് ഒഴിവാക്കിയിട്ടു് (ഉദാഹരണമായി, v = 11 ആണെങ്കിൽ, 11, 22, 33, … എന്നീ നമ്പരുകാരെ ഒന്നിച്ചു് ഒഴിവാക്കുക.) അതിനു ശേഷം എല്ലാവർക്കും പുതിയ നമ്പരുകൾ കൊടുക്കുക. ഇതു് O(v.(log k)) സമയത്തിനുള്ളിൽ ചെയ്യാം. കുട്ടികളുടെ എണ്ണം കൂടുതലാണെങ്കിൽ ഇതുതന്നെ ഏറ്റവും എളുപ്പമുള്ള വഴി.

കുട്ടികളുടെ എണ്ണം കുറവും വാക്കുകളുടെ എണ്ണം കൂടുതലുമാണെങ്കിൽ O(k) സങ്കീർണ്ണതയുള്ള ഒരു അൽഗരിതം ഉണ്ടു്. താഴെക്കൊടുക്കുന്ന ആവർത്തക-ഏകദം (recurrence relation) ഉപയോഗിച്ചു ക്രമമായി കണക്കുകൂട്ടുന്നതു്.

ഇവിടെ കുട്ടികളെ 0, 1, …, (k-1) എന്നു് എണ്ണണം.

ഉദാഹരണമായി, വായ്ത്താരിയിലെ വാക്കുകളുടെ എണ്ണം 11 ആണെന്നിരിക്കട്ടേ. അതായതു്, v = 11.

എന്നിങ്ങനെ. അതായതു് 6 കുട്ടികൾ ഉണ്ടെങ്കിൽ തുടങ്ങുന്ന കുട്ടി മുതൽ നാലാമതു് (3 എന്നാണു് മുകളിൽ ഉത്തരം. പക്ഷേ നമ്മൾ പൂജ്യത്തിൽ നിന്നാണു് എണ്ണൽ തുടങ്ങുന്നതു് എന്നു് ഓർക്കുക.) നിൽക്കുന്ന ആളായിരിക്കും ജയിക്കുക എന്നർത്ഥം. ഒരേ വായ്ത്താരി തന്നെയാണു നമ്മൾ എപ്പോഴും ഉപയോഗിക്കുന്നതെങ്കിൽ അതിന്റെ പട്ടിക നേരത്തേ ഉണ്ടാക്കി അതിനനുസരിച്ചു നിന്നു് എപ്പോഴും ജയിക്കാം.

ജോസഫസ് പ്രശ്നം (Josephus Problem) എന്നാണു് ഇതിനെ വിളിക്കുന്നതു്. ക്രിസ്തുവിനു ശേഷം ഒന്നാം നൂറ്റാണ്ടിൽ ജീവിച്ചിരുന്ന ഫ്ലേവിയസ് ജോസഫസ് എന്ന ജൂതചരിത്രകാരനുമായി ബന്ധപ്പെട്ട ഒരു കഥയിൽ നിന്നാണു് ഈ പേരുണ്ടായതു്. അന്നു റോമക്കാർ ജൂതന്മാരെ കൂട്ടമായി വേട്ടയാടുന്ന കാലമാണു്. ജോസഫസ് ഉൾപ്പെടെ 41 പേർ ഒരു ഗുഹയിൽ പെട്ടുപോയി. ചുറ്റും റോമൻ പട്ടാളവും. കീഴടങ്ങലിനേക്കാൾ ഭേദം ആത്മഹത്യയാണെന്നു തീരുമാനിച്ച ജൂതർ ഒരു വൃത്തത്തിൽ നിൽക്കാനും ജീവനോടെ നിൽക്കുന്ന ഓരോ മൂന്നാമത്തെ ആളെയും ബാക്കിയുള്ളവർ ചേർന്നു കൊല്ലാനും തീരുമാനിച്ചു. എങ്ങനെയെങ്കിലും രക്ഷപ്പെടണമെന്നുണ്ടായിരുന്ന ജോസഫസ് തന്റെ ഗണിതശാസ്ത്രപാടവം കൊണ്ടു് അവസാനം വരുന്ന ആൾ മുപ്പത്തൊന്നാമനായിരിക്കും എന്നു കണക്കുകൂട്ടി അവിടെ ആദ്യം തന്നെ ചെന്നു നിന്നു് മരണത്തിൽ നിന്നു രക്ഷപ്പെട്ടു എന്നാണു് ഐതിഹ്യം.

ജോസഫസിനു് ഒരു കൂട്ടുകാരനും ഉണ്ടായിരുന്നു എന്നും ഒരു കഥയുണ്ടു്. അങ്ങനെയാണെങ്കിൽ അയാൾ പതിനാറാമതായിരിക്കണം നിന്നതു്. രണ്ടുപേർ അവശേഷിച്ചപ്പോൾ ജോസഫസ് അയാളെ പറഞ്ഞു മാനസാന്തരപ്പെടുത്തിയതാവാനും മതി.

കണ്ടോ ഗണിതശാസ്ത്രത്തിന്റെ മാഹാത്മ്യം! ചുമ്മാതാണോ ആടുതോമയുടെ അച്ഛൻ തിലകൻ പറഞ്ഞതു് ലോകം മുഴുവൻ മാത്തമാറ്റിക്സാണെന്നു്!

ജോസഫസ് പ്രശ്നത്തെപ്പറ്റി കൂടുതലറിയാൻ വിക്കിപീഡിയയോ വൂൾഫ്രം മാത്ത് വേൾഡോ വായിക്കുക.


19 വാക്കുകളുള്ള ഒരു വായ്ത്താരിയുപയോഗിച്ചൂ് പതിനായിരം കുട്ടികൾ അത്തള പിത്തള തവളാച്ചി കളിച്ചാൽ അവസാനം ആരു ജയിക്കും എന്നു മുൻ‌കൂട്ടി പറയാൻ കമ്പ്യൂട്ടർ ഉപയോഗിക്കാതെ ഇന്നും ബുദ്ധിമുട്ടാണെന്നു ചുരുക്കം. ഗണിതശാസ്ത്രത്തിൽ കണ്ടുപിടിക്കാത്ത അനേകം കാര്യങ്ങൾ ഇനിയുമുണ്ടെന്നു മനസ്സിലായില്ലേ? നമ്മുടെ അത്തളപിത്തളക്കളി ആളു പുലിയാണെന്നും!

ഇതെങ്ങനെ ജോസഫസ് കണ്ടുപിടിച്ചു എന്നാണു് എന്റെ സംശയം. അങ്ങേർ 41 കല്ലുകൾ വട്ടത്തിൽ വെച്ചു് ഓരോന്നും എടുത്തുകളഞ്ഞു് ഏതു് അവസാനം വരും എന്നു കണ്ടുപിടിച്ചുകാണും. ഒരു പക്ഷേ, ഗണിതശാസ്ത്രം പരാജയപ്പെടുന്നിടത്തു് സിമുലേഷൻ ജയിക്കും എന്നതിന്റെ ആദ്യത്തെ ഉദാഹരണം ആവാം അതു്. കമ്പ്യൂട്ടറുകളുടെ പ്രചാരത്തോടെ ഇന്നു് പല പ്രശ്നങ്ങളും ഇങ്ങനെ ശുദ്ധഗണിതം ഉപയോഗിക്കാതെ സ്റ്റാറ്റിസ്റ്റിക്സും സിമുലേഷനും ഉപയോഗിച്ചു് നിർദ്ധരിക്കുന്നുണ്ടു്.


ഒരു തവണ ഒരാളെ ‘റാൻഡം’ ആയി കണ്ടുപിടിക്കാനും കുട്ടികൾ ഇതുപയോഗിക്കാറുണ്ടു്. (അമേരിക്കയിൽ “ഈനാ, മീനാ…” വായ്ത്താരിയാണു് ഇങ്ങനെ ഉപയോഗിക്കുന്നതു കണ്ടിട്ടുള്ളതു്.) ഇത്തരം ആവശ്യങ്ങൾക്കു് വായ്ത്താരികളുടെ എണ്ണം അഭാജ്യസംഖ്യയാകണമെന്നു നിർബന്ധമില്ല.

ഇത്തരം സാദ്ധ്യതകൾ അനന്തമാണു്. വളി വിട്ടതാരാണെന്നു കണ്ടുപിടിക്കാൻ ഈ ടെക്നിക് ഉപയോഗിക്കാറുണ്ടു് എന്നാണു ദേവൻ പറയുന്നതു്. മനുഷ്യന്റെ ക്രിയേറ്റിവിറ്റി പോകുന്ന പോക്കേ!

കൃത്യമായി ഒരു നിശ്ചിതസംഖ്യയ്ക്കു ശേഷം സംഭവിക്കുന്ന ഇതിനെ റാൻഡം എന്നു വിളിക്കാനും പറ്റില്ല. എങ്കിലും റാൻഡം നമ്പർ (റാൻഡം നമ്പറാഭാസം എന്നു പറയണം –pseudo-random number) ഉണ്ടാക്കാനുള്ള ഒരു വഴി ഈ അക്കുത്തിക്കുത്തുകളി തന്നെയാണെന്നതാണു സത്യം.

അക്കുത്തിക്കുത്തുകളിയിൽ ആളുകൾ പുറത്താകുന്നില്ല എന്നു കരുതുക. v വാക്കുകളും k കുട്ടികളും (0 മുതൽ k-1 വരെ നമ്പരുകൾ) ഉള്ള കളിയിൽ ഓരോ തവണയും ഏതു കുട്ടിയാണെന്നു നോക്കാം.

എന്നിങ്ങനെ. ചുരുക്കത്തിൽ

ഇതിനെ അല്പം കൂടി ഭേദപ്പെടുത്തിയാൽ, അതായതു് വലത്തുവശത്തെ ആദ്യത്തെ പദത്തെ ഒരു സ്ഥിരസംഖ്യ കൊണ്ടു ഗുണിച്ചാൽ, താഴെപ്പറയുന്ന രീതി കിട്ടും.

ഇതു തന്നെയാണു് മിക്കവാറും സോഫ്റ്റ്‌വെയറുകളിലും റാൻഡം നമ്പർ ഉണ്ടാക്കാൻ ഉപയോഗിക്കുന്ന ലീനിയർ കോൺഗ്ര്വെൻഷ്യൽ (Linear congruential) രീതി. a എന്ന സംഖ്യയ്ക്കു ചില പ്രത്യേകതകൾ ഉണ്ടെന്നു മാത്രം. സാധാരണയായി k, v എന്നിവ അഭാജ്യസംഖ്യകളായിരിക്കും.

അക്കുത്തിക്കുത്തു കളിക്കു് ഇത്രയധികം ഗണിതശാസ്ത്രപ്രാധാന്യമുണ്ടെന്നു് ആരെങ്കിലും കരുതിയോ?


ഇത്രയും പറഞ്ഞതിൽ‌നിന്നു് അക്കുത്തിക്കുത്തുകളിയുടെ വായ്ത്താരി ഉണ്ടാക്കിയവർക്കു് നമ്പർ തിയറിയിലെ മുകളിൽ പറഞ്ഞ സിദ്ധാന്തങ്ങൾ അറിവുണ്ടായിരുന്നു എന്നു പറയാൻ സാധിക്കുമോ? ആ സിദ്ധാന്തങ്ങൾ പ്രസ്താവിച്ചു തെളിയിച്ചവരല്ല, അക്കുത്തിക്കുത്തു വായ്ത്താരി പോലെയുള്ളവ ഉണ്ടാക്കിയവരാണു യഥാർത്ഥത്തിൽ ആ സിദ്ധാന്തങ്ങളുടെ ഉപജ്ഞാതാക്കൾ എന്നു പറയാൻ സാധിക്കുമോ?

സിദ്ധാന്തങ്ങളുടെ പൈതൃകത്തെപ്പറ്റിയുള്ള അവകാശവാദങ്ങൾ പലപ്പോഴും ഈ വിധത്തിലാണു് പോകുന്നതു്. അങ്ങനെയാണു് പിംഗളൻ ബൈനോമിയൽ തിയറം കണ്ടുപിടിക്കുന്നതും വേദങ്ങളിൽ കാൽക്കുലസ് ഉണ്ടാകുന്നതും വാല്മീകിയുടെ കാലത്തു വിമാനം കണ്ടുപിടിക്കുന്നതും മറ്റും.

അക്കുത്തിക്കുത്തുകളിയുടെ വായ്ത്താരി ഉണ്ടാക്കിയവർക്കു് തിരഞ്ഞെടുക്കപ്പെടുന്നവർ ആവർത്തിക്കാതെ കഴിയുന്നത്ര വിതരണം ചെയ്തു പോകണമെന്നുണ്ടായിരുന്നു. ചില എണ്ണങ്ങൾ ആവർത്തിക്കുന്നതും ചിലവ ആവർത്തിക്കാതിരിക്കുന്നതും അവർ ശ്രദ്ധിച്ചിട്ടുണ്ടാവാം. അങ്ങനെ പലതു ശ്രമിച്ചിട്ടാവാം ഇന്നു പ്രചാരത്തിലുള്ള വായ്ത്താരികൾ ഉണ്ടായതു്. അല്ലെങ്കിൽ, വായ്ത്താരികളിൽ നിന്നു് ഈ പ്രത്യേകത ഉള്ളവ മാത്രം പ്രചാരത്തിലായി എന്നുമാവാം. അവയ്ക്കും അഭാജ്യസംഖ്യകൾക്കും തമ്മിലുള്ള ബന്ധം ആരും ശ്രദ്ധിച്ചു കാണില്ല. അതുകൊണ്ടാണു് ആരും ഇതുവരെ അതിനെപ്പറ്റി എഴുതി വെയ്ക്കാഞ്ഞതു്.

മറിച്ചു്, സിദ്ധാന്തങ്ങളുണ്ടാക്കിയവർ അതു് ഒരു ദിവസം കൊണ്ടു് ഉണ്ടാക്കിയതല്ല. (ആപ്പിൾ തലയിൽ വീണപ്പോൾ പെട്ടെന്നു ബോധോദയം ഉണ്ടായി ന്യൂട്ടൻ ഗുരുത്വാകർഷണനിയമം ഉണ്ടാക്കി എന്ന കള്ളക്കഥയാണല്ലോ നമുക്കു കൂടുതൽ പരിചയം!) അക്കുത്തിക്കുത്തു കളികൾ പോലെ നാട്ടിൽ പ്രചരിക്കുന്ന പല കളികളുടെയും പ്രസ്താവനകളുടെയും പസിലുകളുടെയും ഉള്ളുകള്ളികളിലേയ്ക്കു ചുഴിഞ്ഞാലോചിച്ചവർ അവരുടെ നിരീക്ഷണങ്ങൾ എഴുതിവെയ്ക്കുകയും പിന്നീടു വന്നവർ അവയെപ്പറ്റി കൂടുതൽ പഠിച്ചു് സിദ്ധാന്തങ്ങളാക്കി തെളിയിക്കുകയും ചെയ്തതാവാം. നൂറ്റാണ്ടുകൾ നീണ്ടുനിന്ന ശാസ്ത്രവികാസത്തിന്റെ ക്രെഡിറ്റ് “അമ്പത്താറു്” കളിയിൽ അവസാനം വിളിച്ചുനിർത്തുന്നവൻ മാത്രം കുണുക്കിറക്കുന്നതു പോലെ അവസാനത്തെ കുരുക്കഴിച്ചവന്റെ പേരിൽ മാത്രം പതിയുന്നു എന്നു മാത്രം. കാൽക്കുലസ് കണ്ടുപിടിച്ച ന്യൂട്ടൻ/ലൈബ്നിറ്റ്സും ഫെർമയുടെ അന്ത്യസിദ്ധാന്തം തെളിയിച്ച വെയിൽ‌സും ഇതിനു് ഉദാഹരണങ്ങൾ മാത്രം.


ഞാൻ മലയാളം ബ്ലോഗിംഗു തുടങ്ങിയിട്ടു് നാലു വർഷം തികയുന്നു. 2005 ജനുവരി 19-നെഴുതിയ ആദ്യ പോസ്റ്റ്. ഇതു് ഇരുനൂറ്റിമുപ്പത്തേഴാമത്തെ പോസ്റ്റ്. അതായതു്, ഏകദേശം ആറു ദിവസത്തിൽ ഒരു പോസ്റ്റു വീതം. അനോണി ആന്റണി, ബെർലി, നമതു് തുടങ്ങിയവരെ അപേക്ഷിച്ചു നോക്കുമ്പോൾ ഒന്നുമല്ലെങ്കിലും ഇത്രയും നാൾ വലിയ മുടക്കമില്ലാതെ എഴുതാൻ കഴിഞ്ഞതിൽ സന്തോഷം.

കുട്ടികള്‍ക്കുള്ളവ
ഗണിതം (Mathematics)
ചുഴിഞ്ഞുനോക്കല്‍

Comments (15)

Permalink

ക്യാ കരൂം?

ബ്ലോഗെഴുതാൻ മൂന്നു മണിക്കൂർ സമയം ഫ്രീ കിട്ടി. എന്തു ചെയ്യണം?

ഒരുപാടു കാലത്തിനു ശേഷമാണു് തടസ്സങ്ങളില്ലാതെ ഇത്രയും സമയം കിട്ടുന്നതു്. തിരക്കിനിടയിൽ വീണുകിട്ടുന്ന മിനിറ്റുകളിൽ എഴുതുന്ന തുണ്ടുകളെ ചേർത്തുവെച്ചാണു പലപ്പോഴും പോസ്റ്റുകളാക്കുന്നതു്. ഒരു ആശയം കിട്ടിയാൽ ഒരു പുതിയ പോസ്റ്റ് തുടങ്ങി ഒരു തലക്കെട്ടും കൊടുത്തു് രണ്ടു വാക്യങ്ങളും എഴുതി അവിടെയിടും. അല്പം സമയം കിട്ടുമ്പോൾ ഡ്രാഫ്റ്റ് പോസ്റ്റുകളുടെ തലക്കെട്ടു നോക്കി അന്നേരത്തെ മൂഡനുസരിച്ചു് തോന്നുന്ന ഒന്നിൽ കുറേക്കൂടി ചേർക്കും. ഇടയ്ക്കു് ഒരു അരമുക്കാൽ മണിക്കൂർ കിട്ടുകയും ഏതെങ്കിലും ഒരു പോസ്റ്റ് തീരാറായിരിക്കുകയും ചെയ്യുമ്പോഴാണു് അവസാനപണികൾ ചെയ്തു് അതു പൂർത്തിയാക്കി പ്രസിദ്ധീകരിക്കുന്നതു്. (ഈ പോസ്റ്റു പോലെയുള്ള വയറിളക്കങ്ങൾക്കു് ഇതു ബാധകമല്ല)

ചുരുക്കം പറഞ്ഞാൽ ബ്ലോഗെഴുത്തിനു് അനോണി ആന്റണി തരുന്ന പെരുമാറ്റച്ചട്ടങ്ങളിൽ ഒന്നു പോലും ഞാൻ പാലിക്കാറില്ല എന്നർത്ഥം. ചുമ്മാതല്ല പോസ്റ്റുകൾ ഉണ്ടാകാത്തതു്!

അതു പോട്ടേ. എനിക്കിന്നു മൂന്നു മണിക്കൂർ സമയമുണ്ടു്. എഴുതിത്തീരാറായ ഏതെങ്കിലും പോസ്റ്റ് തീർക്കണമെന്നുണ്ടു്. ഇവയിൽ ഏതു തീർക്കും?

2006 ജൂണിൽ എഴുതിത്തുടങ്ങിയ “വൃത്തനിർണ്ണയം” എന്ന മൾട്ടിമീഡിയ പോസ്റ്റ് മുതൽ മധുരാജിന്റെ ഈ കമന്റ് കണ്ടപ്പോൾ തോന്നിയ “ചിന്തയുടെ ഭാഷ” എന്ന പോസ്റ്റ് വരെ ഡ്രാഫ്റ്റ് ആയി കിടക്കുന്ന 56 പോസ്റ്റുകളിലെ പലതും കാലഹരണപ്പെട്ടതാണു്. എങ്കിലും ഒരു പത്തുനാല്പതെണ്ണമെങ്കിലും ഇന്നും പ്രസക്തിയുള്ളവയാണു്. അവയിൽ പത്തെണ്ണമെങ്കിലും മിക്കവാറും തീർന്നിരിക്കുന്നതുമാണു്. ഏതെടുക്കണമെന്നു് ഒരു ചിന്താക്കുഴപ്പം.

അഞ്ചു മിനിട്ടു മാത്രം കിട്ടുമ്പോൾ ഈ ചിന്താക്കുഴപ്പം ഉണ്ടാകാറില്ല. തിരഞ്ഞെടുക്കാൻ സമയമില്ല. ഏതെങ്കിലും ഒന്നെടുക്കും. കൂടുതൽ സമയമുള്ളപ്പോൾ തിരഞ്ഞെടുക്കാനാണു സമയം മുഴുവൻ പോകുക. ഇടയ്ക്കിടെ, “അയ്യോ, കിട്ടിയ സമയം വെയ്സ്റ്റാക്കരുതല്ലോ” എന്നു വ്യാകുലപ്പെടാൻ പോകുന്ന സമയം വേറെയും.

അതെന്താ അങ്ങനെ?

നര്‍മ്മം
പ്രശ്നങ്ങള്‍ (Problems)

Comments (16)

Permalink

പൂജ്യത്തിന്റെ കണ്ടുപിടിത്തം

ചില കാര്യങ്ങളെപ്പറ്റി എല്ലാവര്‍ക്കും അറിയാം. പക്ഷേ മിക്കവര്‍ക്കും അവയെപ്പറ്റി കാര്യമായ ഗ്രാഹ്യമൊന്നും ഉണ്ടാവില്ല. അദ്വൈതം, ആപേക്ഷികതാസിദ്ധാന്തം, വൈരുദ്ധ്യാത്മകഭൌതികവാദം, ക്വാണ്ടം മെക്കാനിക്സ്, ടൈം മെഷീന്‍, ഗൂഗിള്‍ പേജ് റാങ്കിംഗ്, ക്രിപ്റ്റോഗ്രഫി, മനുസ്മൃതി, ഭഗവദ്ഗീത, വേദാന്തം, വേദിക് മാത്തമാറ്റിക്സ്, ചോംസ്കിയുടെ ഭാഷാശാസ്ത്രം, ജ്യോതിഷം, വാസ്തുവിദ്യ തുടങ്ങിയവ ഇങ്ങനെയുള്ള ചില സംഭവങ്ങളാണു്. കേട്ടിട്ടില്ലാത്തവര്‍ ചുരുങ്ങും. എന്നാല്‍ കേട്ടവരില്‍ ഭൂരിപക്ഷത്തിനും എന്താണു സംഭവം എന്നു വലിയ പിടിയൊന്നും ഉണ്ടാവില്ല. പക്ഷേ തിരിച്ചും മറിച്ചും അവയെപ്പറ്റി വാചകമടിക്കാന്‍ യാതൊരു മടിയുമില്ല താനും.

ഇങ്ങനെയുള്ള അറിവുകളില്‍ പ്രമുഖസ്ഥാനത്തു നില്‍ക്കുന്നു പൂജ്യത്തിന്റെ കണ്ടുപിടിത്തം. പൂജ്യം കണ്ടുപിടിച്ചതു ഭാരതീയരാണെന്നു് ഏതു കൊച്ചുകുട്ടിയ്ക്കുമറിയാം. എന്നാല്‍ എന്താണു് ഈ കണ്ടുപിടിത്തം കൊണ്ടു് ഉദ്ദേശിക്കുന്നതു്, അല്ലെങ്കില്‍ മുമ്പില്ലാത്ത എന്താണു് ഭാരതീയര്‍ പൂജ്യത്തെ സംബന്ധിച്ചു കണ്ടുപിടിച്ചതു്, ഏകദേശം ഏതു കാലത്താണു് ഈ കണ്ടുപിടിത്തം ഉണ്ടായതു് തുടങ്ങിയവയെപ്പറ്റി ഭൂരിഭാഗം ആളുകള്‍ക്കും കാര്യമായ വിവരം ഇല്ല എന്നതാണു സത്യം.

പൂജ്യത്തിന്റെ കണ്ടുപിടിത്തത്തോടു ബന്ധപ്പെട്ടു കിടക്കുന്ന മറ്റൊന്നാണു് സ്ഥാനീയദശാംശസമ്പ്രദായം (place-value decimal system). 0 മുതല്‍ 9 വരെയുള്ള പത്തു് അക്കങ്ങള്‍ മാത്രം ഉപയോഗിച്ചു് ഏതു സംഖ്യയെയും എഴുതുന്ന വിദ്യ. ഇതു് ഭാരതത്തില്‍ പ്രയോഗത്തിലായപ്പോഴേയ്ക്കും ക്രിസ്തുവിനു ശേഷം ആറാം നൂറ്റാണ്ടെങ്കിലും ആയിക്കാണും എന്നതാണു് ഇവിടെ പറയാന്‍ പോകുന്നതിലെ കാതലായ ഒരു കാര്യം. (ഇതു പൂര്‍ത്തിയാക്കിയതു് അറബികളാണു്. അതിനെപ്പറ്റി വഴിയേ.)


സ്ഥാനീയദശാംശസമ്പ്രദായവും ദശാംശസമ്പ്രദായവും തമ്മിൽ തെറ്റരുതു്. പത്തിനെ അടിസ്ഥാനമാക്കിയ സംഖ്യാസമ്പ്രദായമാണു് ദശാംശസമ്പ്രദായം. ലോകത്തു പലയിടത്തും, ഭാരതത്തിലുൾപ്പെടെ, ഈ സമ്പ്രദായം ഉണ്ടായിരുന്നു. (ഏകം, ദശം, ശതം,… തുടങ്ങിയ പേരുകളും ഉണ്ടായിരുന്നു ഭാരതത്തിൽ.) മനുഷ്യന്റെ രണ്ടു കൈകളിലും കൂടിയുള്ള പത്തു വിരലുകൾ ഉപയോഗിച്ചു് എണ്ണാൻ തുടങ്ങിയതു കൊണ്ടാണു് ഇതു സംഭവിച്ചതു് എന്നാണു് ഒരു തിയറി.

പത്തു കൂടാതെ പന്ത്രണ്ടു്, പതിനാറു്, ഇരുപതു്, അറുപതു് എന്നിങ്ങനെ പല സംഖ്യകളും എണ്ണലിന്റെയും അളവിന്റെയും അടിസ്ഥാനമായുണ്ടു്. പക്ഷേ ഇവയിലൊക്കെ വലിയ സംഖ്യകളോ അളവുകളോ വരുമ്പോൾ പുതിയ അളവുകൾ/ചിഹ്നങ്ങൾ വേണ്ടി വരുന്നു.

ഒരു നിശ്ചിത എണ്ണം ചിഹ്നങ്ങളെക്കൊണ്ടു് ഏതു വലിയ സംഖ്യയെയും എഴുതാൻ പറ്റുന്ന സമ്പ്രദായമാണു സ്ഥാനീയസമ്പ്രദായം. സ്ഥാനമനുസരിച്ചു് ചിഹ്നങ്ങളുടെ വില വ്യത്യാസപ്പെടുന്ന രീതി. അതിനു് ഒരു സ്ഥാനത്തു ചിഹ്നമില്ലെന്നു കാണിക്കാൻ പൂജ്യം ഉണ്ടായേ തീരൂ.


ആദ്യമായി പറയട്ടേ, നാം ഇന്നുപയോഗിക്കുന്ന രീതി കൃത്രിമമാണു്. വളരെ നൂറ്റാണ്ടുകൊണ്ടു് മനുഷ്യന്‍ കണ്ടുപിടിച്ച ഒരു സുപ്രധാനമായ രീതിയാണു് അക്കങ്ങള്‍ക്കു സ്ഥാനമനുസരിച്ചു വിവിധവിലകള്‍ കൊടുത്തു് ഏതു സംഖ്യയെയും സൂചിപ്പിക്കുന്ന ഈ രീതി. വലിയ സംഖ്യകളെക്കൊണ്ടുള്ള കണക്കുകൂട്ടലുകള്‍ അത്യന്താപേക്ഷിതമായപ്പോഴാണു് മനുഷ്യന്‍ ഈ രീതി ഉണ്ടാക്കിയതു്. സംഖ്യകളെ സൂചിപ്പിക്കാന്‍ മാത്രം സ്വാഭാവികമായി (natural) ഇങ്ങനെയൊരു രീതി ഒരിക്കലും ഉണ്ടാവില്ല.

വിശ്വസിക്കാന്‍ കഴിയുന്നില്ല, അല്ലേ? വളരെ ചെറുപ്പത്തിലേ ഇതു നാം പഠിച്ചതുകൊണ്ടു് ഇതിന്റെ ബുദ്ധിമുട്ടു് ഓര്‍മ്മയുണ്ടാവില്ല. നാലഞ്ചു വയസ്സു പ്രായമുള്ള ഒരു കുട്ടിയെ ശ്രദ്ധിക്കൂ. അവനു് സംഖ്യകളെപ്പറ്റി നല്ല വിവരമുണ്ടായിരിക്കും. എണ്ണാന്‍ അറിയാം. ചെറിയ കൂട്ടലുകളും കുറയ്ക്കലുകളും അറിയാം. എങ്കിലും സംഖ്യകള്‍ എഴുതാന്‍ തുടങ്ങുമ്പോള്‍ അവന്‍ വല്ലാതെ തെറ്റിക്കുന്നതു കാണാം. ഇരുനൂറ്റിമൂന്നു് (Two hundred and three) എഴുതാന്‍ പറഞ്ഞാല്‍ അവന്‍ 2003 എന്നെഴുതും. അതാണു സ്വാഭാവികം‍. “ഈ ചെറുക്കനു് ഇത്രയും സിമ്പിള്‍ ആയ ഒരു കാര്യം എത്ര പറഞ്ഞാലും തലയില്‍ കയറില്ലല്ലോ” എന്നു മക്കളെ ശകാരിക്കുന്ന അച്ഛനമ്മമാരെ ഞാന്‍ ധാരാളം കണ്ടിട്ടുണ്ടു്. മനുഷ്യന്‍ ഒരു സഹസ്രാബ്ദം കൊണ്ടു നേടിയ അറിവു് ഏതാനും മാസം കൊണ്ടു തലയില്‍ കയറ്റാനുള്ള ബുദ്ധിമുട്ടാണു് അതു്. സ്ഥാനീയരീതി കുട്ടികളെ മനസ്സിലാക്കാന്‍ നല്ല ബുദ്ധിമുട്ടാണു്. “പൂജ്യത്തിനു വിലയില്ല. അപ്പോള്‍ നൂറും ലക്ഷവും ഒരുപോലെ അല്ലേ” എന്നും മറ്റും ചിലപ്പോള്‍ മുതിര്‍ന്നവര്‍ തന്നെ തര്‍ക്കിക്കുന്നതു് ഈ രീതിയെപ്പറ്റിയുള്ള വികലധാരണകള്‍ കൊണ്ടാണു്.

സംഖ്യകള്‍ എഴുതേണ്ട ആവശ്യം വന്നപ്പോള്‍ ഒരു എണ്ണത്തിനു പകരം ഒരു വരയോ വട്ടമോ ഇട്ടാണു് ആദ്യം കാര്യം നടത്തിയതു്. ഇങ്ങനെ ഒരുപാടു വരകള്‍ ആകുമ്പോള്‍ മനസ്സിലാക്കാന്‍ ബുദ്ധിമുട്ടായതിനാല്‍ അഞ്ചോ പത്തോ കൂടുന്ന കൂട്ടത്തെ ഏതെങ്കിലും പ്രത്യേകരീതിയില്‍ കാണിച്ചു. (സ്റ്റാറ്റിസ്റ്റിക്കല്‍ എണ്ണലിനു് ഇപ്പോഴും ഈ രീതിയിലുള്ള റ്റാലി മാര്‍ക്കുകള്‍ ഉപയോഗിക്കാറുണ്ടു്.) കൂടുതല്‍ വലിയ സംഖ്യകള്‍ വന്നപ്പോള്‍ വലിയ സംഖ്യകളെ കാണിക്കാന്‍ പുതിയ രീതികള്‍ ഉണ്ടാക്കി. ലോകത്തു പണ്ടുണ്ടായിരുന്ന മിക്കവാറും എല്ലാ സംഖ്യാലേഖനരീതികളും ഈ രീതിയാണു് അവലംബിക്കുന്നതു്.

ഉദാഹരണമായി എല്ലാവര്‍ക്കും പരിചയമുള്ള റോമന്‍ രീതി എടുക്കാം. ഒന്നിനു് I, അഞ്ചിനു് V, പത്തിനു് X, അമ്പതിനു് L, നൂറിനു് C, അഞ്ഞൂറിനു് D, ആയിരത്തിനു് M എന്നിങ്ങനെ ചിഹ്നങ്ങള്‍ കൊടുത്തു. 1989 എന്നതു് MDCCCCLXXXVIIII എന്നെഴുതും. (കൂട്ടല്‍ കൂടാതെ കുറയ്ക്കലും ഉള്‍ക്കൊള്ളിച്ചുകൊണ്ടു് MCMLXXXIX എന്നെഴുതുന്ന സമ്പ്രദായം പിന്നീടുണ്ടായതാണു്.) ഈ രീതി അവര്‍ക്കാവശ്യമുണ്ടായിരുന്ന സംഖ്യകളൊക്കെ എഴുതാന്‍ മതിയായിരുന്നു. വലിയ സംഖ്യകള്‍ എഴുതേണ്ടി വരുമ്പോള്‍ (ഇരുപതിനായിരം എഴുതാന്‍ ഇരുപതു് M എഴുതേണ്ടി വരും. അല്ലെങ്കില്‍ പുതിയ ചിഹ്നങ്ങള്‍ ഉണ്ടാക്കേണ്ടി വരും.) ഇതു പിന്നെയും ബുദ്ധിമുട്ടാണു്. (ആയിരം കൊണ്ടു ഗുണിച്ചതു കാണിക്കാന്‍ മുകളില്‍ വരയിടുന്ന സമ്പ്രദായം വളരെ കാലത്തിനു ശേഷം വന്നതാണു്.)

പ്രാചീനഭാരതത്തിലും ഇതേ രീതിയിലുള്ള ബ്രാഹ്മി അക്കങ്ങള്‍ ഉണ്ടായിരുന്നു. റോമന്‍ സമ്പ്രദായത്തെ അപേക്ഷിച്ചു് വളരെ കൂടുതല്‍ ചിഹ്നങ്ങള്‍ ഉണ്ടായിരുന്നു എന്നു മാത്രം.

ഈ രീതി വളരെ പണ്ടു മാത്രം ഉപയോഗിച്ചിരുന്ന പ്രാകൃതരീതിയാണെന്നു കരുതരുതു്. ഈ അടുത്ത കാലം വരെയും കേരളത്തിലെ കണക്കപ്പിള്ളമാര്‍ ഉപയോഗിച്ചിരുന്ന നന്നാടിസമ്പ്രദായത്തെപ്പറ്റി ദേവരാഗമാണെന്നു തോന്നുന്നു എവിടെയോ എഴുതിയിരുന്നു. ഈ ചിഹ്നങ്ങള്‍ യൂണിക്കോഡ് സ്റ്റാന്‍ഡേര്‍ഡില്‍ ഇപ്പോള്‍ സ്ഥാനം പിടിച്ചിട്ടുണ്ടു് – 5.1-ല്‍.

ഈ രീതിയിലാണു് നാം എഴുതിയിരുന്നെങ്കില്‍ നാലു വയസ്സുകാരന്‍ പയ്യനു് യാതൊരു ബുദ്ധിമുട്ടും ഉണ്ടാവില്ലായിരുന്നു. ഇരുനൂറ്റിമൂന്നു് എഴുതാന്‍ ഇരുനൂറിന്റെ ചിഹ്നം എഴുതുക, അതിനു ശേഷം മൂന്നിന്റെ ചിഹ്നം എഴുതുക. സോ സിമ്പിള്‍!

ഈ രീതി പ്രശ്നമാകുന്നതു് കണക്കുകൂട്ടലുകളിലാണു്. രണ്ടു റോമന്‍ സംഖ്യകള്‍ തമ്മില്‍ കൂട്ടാനോ ഗുണിക്കാനോ ശ്രമിച്ചുനോക്കൂ. എഴുത്തില്‍ത്തന്നെ ഇടത്തുവശത്തു കുറയ്ക്കേണ്ട ചിഹ്നങ്ങള്‍ ഇടാത്ത പഴയ രീതിയാണെങ്കില്‍ കൂട്ടാന്‍ വലിയ ബുദ്ധിമുട്ടില്ല. ഒരേ തരത്തിലുള്ള ചിഹ്നങ്ങള്‍ ഒന്നിച്ചു വെയ്ക്കുക. അവയുടെ എണ്ണം അഞ്ചാവുമ്പോള്‍ അവ മാറ്റി അവയുടെ തൊട്ടു മുകളിലുള്ള ചിഹ്നം ഒരെണ്ണം വെയ്ക്കുക. വലത്തുനിന്നു് ഇടത്തോട്ടോ, ഇടത്തു നിന്നു വലത്തോട്ടോ ഏതെങ്കിലും ക്രമത്തിലോ ഇതു ചെയ്യാം എന്നൊരു സൌകര്യമുണ്ടു്.

കുറയ്ക്കല്‍ അല്പം കൂടി ബുദ്ധിമുട്ടാണു്. ഗുണനം പിന്നെയും ബുദ്ധിമുട്ടാണു്. ഈ രീതി ഉപയോഗിച്ചു് ആരെങ്കിലും ഹരണം ചെയ്തിട്ടുണ്ടോ എന്നു തന്നെ എനിക്കറിയില്ല.


ഇന്നത്തെ രീതിയിലുള്ള സംഖ്യാലേഖനസമ്പ്രദായത്തിന്റെ ഏറ്റവും പഴയ രൂപം ഉണ്ടായതു ബാബിലോണിയയിലാണു്. പത്തിനു പകരം 60-നെ ആധാരമാക്കി എടുത്തിരുന്ന അവര്‍ക്കു് ഒന്നു മുതല്‍ 60 വരെയുള്ള സംഖ്യകള്‍ക്കു ചിഹ്നമുണ്ടായിരുന്നു. അറുപത്തൊന്നു് എന്നെഴുതാന്‍ ഒന്നിന്റെ ചിഹ്നത്തിന്റെ വലത്തുവശത്തു് ഒന്നിന്റെ ചിഹ്നം എഴുതും. അതായതു് ഇടത്തേ ഒന്നു് അറുപതിനെയും വലത്തേ ഒന്നു് ഒന്നിനെയും സൂചിപ്പിക്കുന്നു.

3600 വരെ ഇങ്ങനെ എഴുതാം. അതു കഴിഞ്ഞു് മൂന്നക്കങ്ങളുടെ വരവായി. ഇങ്ങനെ ഈ അറുപതു ചിഹ്നങ്ങളുപയോഗിച്ചു് എത്ര വലിയ സംഖ്യകളെയും എഴുതാം. അങ്ങനെ സ്ഥാനീയസംഖ്യാസമ്പ്രദായം (സ്ഥാനം അനുസരിച്ചു് ഒരേ ചിഹ്നത്തിനു പല വില വരുന്ന രീതി) ആദ്യമുണ്ടാക്കിയവരാണു ബാബിലോണിയക്കാര്‍.

ഇവിടെ ഒരു പ്രശ്നമുണ്ടു്. 61 എന്നു് എങ്ങനെ എഴുതും? രണ്ടു് ഒന്നുകള്‍. 3601 എന്നു് എങ്ങനെ എഴുതും? അതും രണ്ടു് ഒന്നുകള്‍. 3660 എന്നതോ? അതും രണ്ടു് ഒന്നുകള്‍. ഇവയെ തമ്മില്‍ വ്യവച്ഛേദിക്കാന്‍ പൂജ്യം പോലെ ഒന്നും അവര്‍ക്കുണ്ടായിരുന്നില്ല.

അതെങ്ങനെ, അത്ര മണ്ടന്മാരായിരുന്നോ ബാബിലോണിയക്കാര്‍? സത്യം അതല്ല. സംഖ്യകള്‍ അവര്‍ എഴുതിയല്ല സൂചിപ്പിച്ചിരുന്നതു്. കണക്കുകൂട്ടലിലെ ആദ്യത്തെ നാഴികക്കല്ലായ മണിച്ചട്ടം (Abacus) കണ്ടുപിടിച്ചവരാണു് അവര്‍. (മണിച്ചട്ടം കണ്ടുപിടിച്ച കാലത്തു് ബാബിലോണിയ ഉണ്ടായിരുന്നില്ല. എങ്കിലും സുമേറിയൻ എന്നു വിളിക്കുന്ന ആ സംസ്കാരത്തിലാണു് മണിച്ചട്ടത്തിന്റെ കണ്ടുപിടിത്തം.) കണക്കുകൂട്ടലിനായി അവര്‍ സംഖ്യകള്‍ സൂചിപ്പിച്ചിരുന്നതു് മണിച്ചട്ടത്തിലായിരുന്നു. മണിച്ചട്ടത്തില്‍ ഓരോ സ്ഥാനത്തിനും ഓരോ വരി മുത്തുകള്‍ ഉണ്ടായിരുന്നു. ഒരു വശത്തേയ്ക്കു നീക്കുന്ന മുത്തുകള്‍ ആ സ്ഥാനത്തെ അക്കത്തെ സൂചിപ്പിക്കുന്നു. ഇടയ്ക്കു് ഒരു വരിയില്‍ മുത്തുകള്‍ നീക്കിയിട്ടില്ലെങ്കില്‍ അതു കൂട്ടേണ്ടാ. ഈ രീതിയില്‍ 61, 3601, 3660 എന്നിവ വ്യത്യസ്തം തന്നെയാണു്. കണക്കുകൂട്ടലിനെ അതു ബാധിക്കുന്നില്ല.

ഇവിടെ മുത്തുകള്‍ നീക്കാത്ത ഒരു വരി ഇന്നത്തെ പൂജ്യത്തിന്റെ ധര്‍മ്മം നിര്‍വ്വഹിക്കുന്നു. പക്ഷേ, സംഖ്യകള്‍ എഴുതാന്‍ തുടങ്ങിയപ്പോള്‍ അവര്‍ ഇത്തരം വരികള്‍ സൂചിപ്പിക്കാന്‍ വഴി ഉണ്ടാക്കിയില്ല. തനിക്കു് അപ്പോള്‍ ആവശ്യമില്ലാത്ത കാര്യങ്ങള്‍ ചെയ്യാതിരിക്കുക എന്നതു മനുഷ്യന്റെ സ്വഭാവമാണല്ലോ!

ചിരിക്കണ്ട. Y2K ബഗ് എന്ന സാധനം കഴിഞ്ഞിട്ടു് അധികകാലം ആയിട്ടില്ലല്ലോ. നാലക്കമുള്ള വര്‍ഷത്തെ രണ്ടക്കം കൊണ്ട്‌ എഴുതിയതാണു് ഈ പ്രശ്നം ഉണ്ടാകാന്‍ കാരണം. ഈ പ്രശ്നം വരുമെന്നു് അറിയാമായിരുന്നിട്ടും ആളുകള്‍ താടിയും ചൊറിഞ്ഞിരുന്നു. “ഞാന്‍ ഈ സ്ഥലത്തു ജോലി ചെയ്യുന്നിടത്തോളം കാലം ഇതാവശ്യമില്ല. പിന്നെ ഞാന്‍ എന്തിനു മിനക്കെടണം” എന്ന മട്ടു്. അതുകൊണ്ടെന്താ, എത്ര പേര്‍ക്കാണു ജോലി കിട്ടിയതു്!

കുറേ കഴിഞ്ഞപ്പോള്‍ ഈ പ്രശ്നം മനസ്സിലാക്കി അവര്‍ ഇടയ്ക്കു് വിട്ടുപോയ ഒരു സ്ഥാനം ഉണ്ടെന്നു കാണിക്കാന്‍ ഒരു സ്പേസ് ഇട്ടു. 305 എന്നതിനു പകരം 3 5 എന്നു് എഴുതുന്നതു പോലെ. അങ്ങനെ അതിനെ 35-ൽ നിന്നു വേർതിരിച്ചറിയാം. പക്ഷേ, 35-നെയും 350-നെയും അപ്പോഴും തിരിച്ചറിയാൻ പറ്റില്ല. പിൽക്കാലത്തു് സ്പേസ് മാറ്റി ഒരു ചിഹ്നം ഇട്ടുതുടങ്ങി. ഇതാണു ചരിത്രത്തിലെ ആദ്യത്തെ പൂജ്യം. അപ്പോഴും സംഖ്യയുടെ അവസാനത്തിൽ അതു് ഇട്ടില്ല, ഇടയിലേ ഇട്ടുള്ളൂ. അതായതു് 60 അടിസ്ഥാനമായ സമ്പ്രദായത്തിൽ 61, 3601 എന്നിവയെ ഇപ്പോള്‍ തിരിച്ചറിയാം. എന്നാല്‍ 61, 3660 എന്നിവയെ തിരിച്ചറിയാന്‍ പറ്റില്ല.

ഇങ്ങനെയൊക്കെയാണെങ്കിലും, ബാബിലോണിയന്‍ രീതി കണക്കുകൂട്ടാന്‍ വളരെ എളുപ്പമായിരുന്നു. അലക്സാണ്ടര്‍ ബാബിലോണിയയെ കീഴടക്കിയതോടെ ബാബിലോണിയന്‍ സംഖ്യാലേഖനരീതിയും അവസാനിച്ചു. എങ്കിലും ഗ്രീസിലെ ഗണിതജ്ഞര്‍ രഹസ്യമായി ഈ രീതി ഉപയോഗിച്ചാണു കണക്കുകൂട്ടിയിരുന്നതു് എന്നു പറയപ്പെടുന്നു. എന്നിട്ടു് അവര്‍ ഫലങ്ങള്‍ റോമന്‍ സംഖ്യകള്‍ ഉപയോഗിച്ചു് എഴുതി നാട്ടുകാര്‍ക്കു കൊടുത്തു. ജ്ഞാനം വരേണ്യവര്‍ഗ്ഗത്തില്‍ത്തന്നെ ഒതുങ്ങിനിന്നതിന്റെ ചരിത്രം ലോകത്തു് എല്ലായിടത്തുമുണ്ടു്.

അലക്സാണ്ടറുടെ ഇന്ത്യയിലേയ്ക്കുള്ള പടനീക്കമാണു് ബാബിലോണിയന്‍ സംഖ്യാലേഖനരീതി ഇന്ത്യയിലേയ്ക്കു് എത്താന്‍ സഹായിച്ചതു് എന്നൊരു തിയറിയുണ്ടു്. അതു് ഇന്ത്യയുടെ പൈതൃകത്തെ ഇടിച്ചുതാഴ്ത്തി യൂറോപ്പിലാണു് എല്ലാം ഉണ്ടായതു് എന്നു വാദിക്കുന്ന യൂറോപ്യന്‍സിന്റെ കുത്സിതശ്രമമാണെന്നു് ഭാരതീയപൈതൃകവാദികള്‍ വാദിക്കുന്നു. അതെന്തെങ്കിലുമാകട്ടേ. ഏതായാലും, ഭാരതത്തില്‍ ആറാം നൂറ്റാണ്ടു വരെ പൂജ്യമുള്ള സ്ഥാനീയസമ്പ്രദായം ഉപയോഗിച്ചു് ആരും എഴുതിയിട്ടില്ല. പൂജ്യം ആ അര്‍ത്ഥത്തില്‍ ഉപയോഗിച്ചിട്ടുമില്ല.

ബാബിലോണിയന്‍ രീതിയോടു സാദൃശ്യമുള്ള, എന്നാല്‍ ദശാംശസമ്പ്രദായത്തിലുള്ള, സംഖ്യകള്‍ ബാഖ്‌ഷലി രേഖയില്‍ (ഇതെഴുതിയ സമയത്തെപ്പറ്റി തര്‍ക്കമാണു്. ക്രിസ്തുവിനു മുമ്പു രണ്ടാം നൂറ്റാണ്ടു മുതല്‍ ക്രിസ്തുവിനു ശേഷം മൂന്നാം നൂറ്റാണ്ടു വരെ ഇതിന്റെ കാലം പറഞ്ഞു കേള്‍ക്കുന്നുണ്ടു്. കണ്ടെടുത്ത പ്രതിയുടെ കാലം ക്രി. പി. മൂന്നാം നൂറ്റാണ്ടാണു്.) ഉണ്ടു്. അതിലും പൂജ്യമില്ല. എങ്കിലും പൂജ്യമില്ലാത്ത സ്ഥാനീയസമ്പ്രദായം ആ കാലഘട്ടത്തില്‍ ഭാരതത്തില്‍ പ്രചരിച്ചു തുടങ്ങി എന്നു പറയാം.

ആര്യഭടന്‍ (5/6 നൂറ്റാണ്ടു്) ആണു് പൂജ്യവും സ്ഥാനീയസംഖ്യാസമ്പ്രദായവും കണ്ടുപിടിച്ചതെന്നു് ഒരു വാദമുണ്ടു്. ഏതായാലും, അദ്ദേഹത്തിന്റെ ആര്യഭടീയത്തില്‍ അതിനുള്ള തെളിവൊന്നുമില്ല. സ്ഥാനീയസമ്പ്രദാ‍യവും പൂജ്യവും പ്രചാരത്തിലായിരുന്നെങ്കില്‍ അദ്ദേഹം കഠിനമായ ആര്യഭടീയസംഖ്യാക്രമം ഉപയോഗിക്കാതെ ഭൂതസംഖ്യ പോലെയോ പരല്‍പ്പേരു പോലെയോ ഉള്ള ഏതെങ്കിലും രീതി ഉപയോഗിച്ചേനേ.

മറ്റൊന്നു കൂടി ഇവിടെ ആലോചിക്കണം. ഇരുപത്തിനാലാം വയസ്സിലാണു് അദ്ദേഹം ആര്യഭടീയം എഴുതുന്നതു്. അതിനു ശേഷം 50 കൊല്ലം കൂടി അദ്ദേഹം ജീവിച്ചിരുന്നു. ഈ കണ്ടുപിടിത്തങ്ങള്‍ അതിനിടയില്‍ അദ്ദേഹം നടത്തിയിരിക്കാം എന്നു കരുതുന്നതില്‍ അസാംഗത്യമൊന്നുമില്ല.

ഏതായാലും ആര്യഭടന്റെ കാലത്തിനടുത്താണു് നമ്മള്‍ പൂജ്യവും ഇന്നുപയോഗിക്കുന്ന സ്ഥാനീയദശാംശസമ്പ്രദായവും ഉണ്ടായതെന്നു കരുതാം.


അഞ്ചാം നൂറ്റാണ്ടിൽ പ്രാകൃതഭാഷയിൽ എഴുതിയ ലോകവിഭാഗ എന്ന ജൈനകൃതിയിൽ പൂജ്യം ഉൾക്കൊള്ളിച്ചുകൊണ്ടുള്ള സ്ഥാനീയദശാംശസമ്പ്രദായം ഉണ്ടു് എന്നു പറയപ്പെടുന്നു. ഈ പുസ്തകം കണ്ടുകിട്ടിയിട്ടില്ല. ഇതിന്റെ ഒരു സംസ്കൃതപരിഭാഷയാണു കിട്ടിയിട്ടുള്ളതു്. അതു പിൽക്കാലത്തു് എഴുതിയതുമാണു്. ഇതിൽ ചിഹ്നങ്ങളല്ല, വാക്കുകളായാണു് ഓരോ അക്കവും പറഞ്ഞിരിക്കുന്നതു്.

ഏഴാം നൂറ്റാണ്ടിൽ ഒരു സിറിയൻ ബിഷപ്പ് ഒൻപതു ചിഹ്നങ്ങൾ കൊണ്ടു് ഏതു സംഖ്യയെയും ഭാരതീയർ എഴുതുന്നതിനെപ്പറ്റി എഴുതിയതാണു് സ്ഥാനീയരീതി ഉപയോഗിച്ചതിന്റെ ആദ്യത്തെ തെളിവു്. പക്ഷേ ഇതു് എങ്ങനെയായിരുന്നു എന്നോ, ഇതിൽ പൂജ്യം ഉണ്ടായിരുന്നോ എന്നോ വ്യക്തമല്ല.

ആദ്യമായി പൂജ്യം എഴുതിയതിന്റെ തെളിവു് 876-ലാണു്. ഗ്വാളിയോറിലെ ഒരു ക്ഷേത്രത്തോടനുബന്ധിച്ചുള്ള പൂന്തോട്ടത്തിന്റെ വലിപ്പവും (187 ഹസ്തം x 270 ഹസ്തം) ഒരു ദിവസം പൂജിക്കേണ്ട പുഷ്പങ്ങളുടെ എണ്ണവും (50) പൂജ്യം ഉപയോഗിച്ചു് എഴുതിയതു്. ആ കാലമായപ്പോഴേയ്ക്കും പൂജ്യം ഉപയോഗിച്ചുള്ള സ്ഥാനീയദശാംശസമ്പ്രദായം പ്രചാരത്തിലായി. അതിനാൽ അതിനും ഏകദേശം 200 കൊല്ലമെങ്കിലും മുമ്പായിരിക്കണം ഈ ആശയം പൂർണ്ണമായി കണ്ടുപിടിച്ചതെന്നാണു വിദഗ്ദ്ധർ അനുമാനിക്കുന്നതു്. അതായതു് ഏകദേശം ആറാമത്തെയോ ഏഴാമത്തെയോ നൂറ്റാണ്ടിൽ.

എന്തായാലും ക്രിസ്തുവിനു പിൻപു് അഞ്ചാം നൂറ്റാണ്ടിനു ശേഷമാണു് പൂജ്യം ഉൾപ്പെടുന്ന സ്ഥാനീയസമ്പ്രദായം ഉണ്ടായതു് എന്ന കാര്യത്തിൽ കാര്യമായ സംശയമൊന്നും ഇല്ല.


സ്ഥാനീയസമ്പ്രദായത്തിൽ ഒരു സ്ഥാനത്തിന്റെ അഭാവം കാണിക്കുന്ന ചിഹ്നം എന്നതു കൂടാതെ പൂജ്യത്തെ ഒരു സംഖ്യയായി കണക്കാക്കുന്നതും കൂടി ഉണ്ടെങ്കിലേ ഇന്നു നാം കാണുന്ന പൂജ്യത്തിന്റെ കണ്ടുപിടിത്തം പൂർണ്ണമാകുകയുള്ളൂ. ഇതും ഭാരതത്തിൽ തന്നെയാണു് സംഭവിച്ചതു്.

ആര്യഭടൻ പൂജ്യം എന്ന സംഖ്യയെപ്പറ്റി പറഞ്ഞിട്ടുണ്ടു്. ആകാശം എന്ന അർത്ഥമുള്ള “ഖം” എന്ന വാക്കാണു് അദ്ദേഹം ഉപയോഗിച്ചതു്. എങ്കിലും പൂജ്യത്തെ ഒരു സംഖ്യയായി വ്യക്തമായി നിർവ്വചിക്കുകയും അതിന്റെ സ്വഭാവങ്ങളും അതിൽ ചെയ്യാവുന്ന ക്രിയകളും വിവരിക്കുകയും ചെയ്തതു് ബ്രഹ്മഗുപ്തൻ (ഏഴാം നൂറ്റാണ്ടു്) ആണു്. പൂജ്യത്തെ പൂജ്യം കൊണ്ടു ഹരിച്ചാൽ പൂജ്യം കിട്ടും എന്ന ഒരു കാര്യം ഒഴിച്ചാൽ (ഇതു പിന്നീടു് പന്ത്രണ്ടാം നൂറ്റാണ്ടിൽ ഭാസ്കരാചാര്യർ തിരുത്തി) ഈ സിദ്ധാന്തങ്ങൾ ആധുനികഗണിതശാസ്ത്രവുമായി ഒത്തുപോകുന്നു. പൂജ്യം മാത്രമല്ല, നെഗറ്റീവ് സംഖ്യകളെപ്പറ്റിയും ബ്രഹ്മഗുപ്തൻ വിശദമായി പ്രതിപാദിക്കുന്നുണ്ടു്.


മുകളിൽ കൊടുത്ത രണ്ടു കാര്യങ്ങൾ ചേർത്തു വെച്ചാൽ ഇന്നത്തെ പൂജ്യത്തിന്റെ ജന്മം ഏതാണ്ടു് ക്രിസ്തുവിനു പിൻപു് ഏഴാം നൂറ്റാണ്ടു് ആണെന്നു കാണാം. എഴുതുന്നതിനു മുമ്പു് കുറേക്കാലം മുമ്പുതന്നെ ഈ ആശയം ഉടലെടുത്തു എന്നു വാദിച്ചാൽ തന്നെ, അഞ്ചാം നൂറ്റാണ്ടിനു മുമ്പല്ല എന്നു നിസ്സംശയം പറയാം.


സ്ഥാനീയദശാംശസമ്പ്രദായം പൂർത്തിയാക്കിയതു് അറബികളാണു്. ഭാരതീയർ പൂർണ്ണസംഖ്യകളല്ലാത്ത സംഖ്യകളെ സൂചിപ്പിക്കാൻ ഭിന്നസംഖ്യകളാണു് ഉപയോഗിച്ചതു്. അതായതു് അംശം, ഛേദം എന്നു രണ്ടു സംഖ്യകളുടെ അനുപാതമായി ഭിന്നങ്ങളെ എഴുതി. അറബികൾ ഒരു പടി കൂടി മുന്നോട്ടു പോയി ദശാംശബിന്ദുവിനു വലത്തോട്ടു് അക്കങ്ങളെഴുതി ഭിന്നങ്ങളെ സൂചിപ്പിക്കുന്ന രീതി കണ്ടുപിടിച്ചു. ഇടത്തോട്ടു് 1, 10, 100,… തുടങ്ങിയവയുടെ ഗുണിതങ്ങളെ അക്കങ്ങൾ സൂചിപ്പിക്കുന്നതു പോലെ, വലത്തോട്ടു് 1/10, 1/100, 1/1000,… തുടങ്ങിയവയുടെ ഗുണിതങ്ങളെയും അവിടത്തെ അക്കങ്ങൾ സൂചിപ്പിക്കുന്ന രീതി ഉണ്ടായതോടെ സ്ഥാനീയദശാംശസമ്പ്രദായം പൂർത്തിയായി.


പൂജ്യത്തെപ്പറ്റി പറയുമ്പോൾ മറ്റൊരു കൂട്ടരെ പരാമർശിക്കാതെ പോകുന്നതു ശരിയല്ല. പരിഷ്കൃതലോകത്തിൽ നിന്നകന്നു് മദ്ധ്യ-അമേരിക്കയിൽ ഉണ്ടായി പുറം‌ലോകവുമായി ബന്ധമുണ്ടാകാതെ അവിടെത്തന്നെ ഒടുങ്ങിയ മായന്മാരെ.

മായന്മാർക്കു ഭ്രാന്തു കാ‍ലഗണനത്തിലായിരുന്നു. അഞ്ചാറു തരം കലണ്ടറുകളാണു് അവർ ഉണ്ടാക്കിയതു്. സൂര്യനെയും ചന്ദ്രനെയും മാത്രമല്ല, ശുക്രന്റെ സഞ്ചാരത്തെയും അടിസ്ഥാനമാക്കി അവർ കലണ്ടർ ഉണ്ടാക്കി.

സ്വാഭാവികമായും കലണ്ടറുകൾ ഉണ്ടാക്കിയ വകയിൽ അവരുടെ ഗണിതശാസ്ത്രവും വളരെ മികച്ചതായിരുന്നു. പൂജ്യം ഉൾപ്പെടെയുള്ള ഇരുപതു് അക്കങ്ങളുള്ള സംഖ്യാസമ്പ്രദായവും (എണ്ണാൻ കൈയിലെ മാത്രമല്ല, കാലിലെ വിരലുകളും ഉപയോഗിച്ചുകാണും!) അതെഴുതാൻ രണ്ടു രീതികളും, അതിലൊരു രീതിയിൽ അഞ്ചിന്റെ അടിസ്ഥാനത്തിൽ ഉള്ള എഴുത്തും അവരുടെ പ്രത്യേകതയാണു്.

മായന്മാരാണോ ഭാരതീയരാണോ പൂജ്യം ആദ്യം ഉപയോഗിച്ചതെന്നതു വ്യക്തമല്ല. പക്ഷേ, ലോകത്തിനു പൂജ്യം സംഭാവന ചെയ്തതു ഭാരതീയരാണെന്നതിൽ തർക്കമില്ല. ഭാരതീയരിൽ നിന്നു പൂജ്യം നേടിയതിനു വളരെക്കാലം ശേഷമാണു് മായന്മാരെപ്പറ്റി ലോകം അറിഞ്ഞതു്.


എന്താണു് ഈ ലേഖനത്തിന്റെ പ്രസക്തി?

ന്യായമായ ചോദ്യം. പൂജ്യം ആരു് എന്നു കണ്ടുപിടിച്ചു എന്നതിനു് ഇന്നു് എന്തു പ്രാധാന്യമുണ്ടു്?

പൂജ്യം ഭാരതത്തിലാണു കണ്ടുപിടിച്ചതു് എന്നു പറഞ്ഞു് അഭിമാനിക്കാനോ? ഗണിതശാസ്ത്രചരിത്രത്തിൽ നിന്നു യൂറോപ്പിൽ നിന്നുള്ളതല്ലാത്തവയെല്ലാം തമസ്കരിച്ചു് റോമൻ സാമ്രാജ്യത്തിന്റെ തകർച്ചയ്ക്കു ശേഷം പതിനാറാം നൂറ്റാണ്ടു വരെ ലോകത്തിൽ ഒരു ശാസ്ത്രപുരോഗതിയും നടന്നിട്ടില്ല എന്ന അസംബന്ധം വിളിച്ചുകൂവുന്ന ചില പാശ്ചാത്യശാസ്ത്രചരിത്രകാരന്മാരെ എതിർക്കാനോ? ഭാരതത്തിലെ (അതുപോലെ യൂറോപ്പല്ലാത്ത മറ്റു രാജ്യങ്ങളിലെയും) പഴയ ശാസ്ത്രഗ്രന്ഥങ്ങൾ തപ്പിയെടുത്തു് വിശദീകരണങ്ങളോടെ പ്രസിദ്ധീകരിക്കേണ്ടതിന്റെ ആവശ്യം ആളുകളെ മനസ്സിലാക്കിക്കാനോ?

തീർച്ചയായും. മുകളിൽ പറഞ്ഞവയെല്ലാം ഈ ലേഖനം എഴുതാനുള്ള പ്രചോദനങ്ങളിൽ പെടും. അതോടൊപ്പം തന്നെ ഭാരതീയർ തന്നെ പടച്ചുണ്ടാക്കുന്ന ചില അസംബന്ധങ്ങളുടെ നിജസ്ഥിതി വെളിയിൽ കൊണ്ടുവരാനും ഇതു് ഉപകരിക്കും.

ചില ഉദാഹരണങ്ങൾ താഴെ.

  1. വേദിക് മാത്തമാറ്റിക്സ് എന്ന പേരിൽ പ്രചരിക്കുന്ന ഒരു തട്ടിപ്പുണ്ടു്. ശ്രീ ഭാരതികൃഷ്ണ തീർത്ഥജി എന്ന പുരി മഠത്തിലെ ഒരു ശങ്കരാചാര്യർ എഴുതിയ ഈ പുസ്തകത്തിനെ അടിസ്ഥാനമാക്കി ഉള്ളതു്. ഇല്ലാത്ത ഒരു വേദത്തിൽ നിന്നുള്ള വല്ലാത്ത കുറേ സൂത്രങ്ങൾ ഉദ്ധരിച്ചിട്ടു് അവയുടെ അർത്ഥം കാൽക്കുലസിലെ ഇന്റഗ്രേഷൻ ഫോർമുലയാണു്, പിൽക്കാലത്തു മാത്രം കണ്ടുപിടിച്ച ഒരുപാടു കാര്യങ്ങൾ അവയിലുണ്ടു് എന്നു വാദിക്കുന്ന വെള്ളം ചേർക്കാത്ത തട്ടിപ്പു്. (വേദകാലത്തു് ഭാരതത്തിൽ ശുൽബസൂത്രങ്ങൾ പോലെയുള്ള മഹത്തായ ഗണിതശാസ്ത്രഗ്രന്ഥങ്ങൾ ഉണ്ടായിട്ടുണ്ടു്. അവയെപ്പറ്റിയല്ല ഞാൻ പറയുന്നതു്.) ഈ പുസ്തകത്തിൽ പറഞ്ഞിരിക്കുന്ന പലതും തെറ്റാണെന്നു മനസ്സിലാക്കാൻ വേദകാലത്തു സ്ഥാനീയദശാംശസമ്പ്രദായം ഇല്ല എന്ന ഒരേയൊരു വസ്തുത മതി.
    1. 19, 29, 39,… തുടങ്ങിയ vulgar fractions(!)-ന്റെ ദശാംശരീതിയിലുള്ള expansion നൽകുന്ന സൂത്രമാണു് “ഏകാധികേന പൂർവ്വേന” എന്ന സൂത്രമെന്നു പറയുന്നു. വേദകാലത്തു് സ്ഥാനീയദശാംശസമ്പ്രദായമില്ല, പൂജ്യം എന്ന സംഖ്യയില്ല, ഭിന്നങ്ങളെ ദശാംശരീതിയിൽ എഴുതുന്ന രീതി തുടങ്ങിയിട്ടുമില്ല. പിന്നെയെന്തു സൂത്രം?
    2. “നിഖിലം നവതശ്ചരമം ദശമഃ” എന്ന സൂത്രം സ്ഥാനീയദശാംശസമ്പ്രദായത്തിൽ എഴുതുമ്പോൾ പൂജ്യങ്ങളിൽ അവസാനിക്കുന്ന ഒരു സംഖ്യയിൽ നിന്നു് മറ്റൊരു സംഖ്യ കുറയ്ക്കുമ്പോൾ ഉള്ള സംഖ്യ കിട്ടാനുള്ള എളുപ്പ വഴി തരുന്നു. (മറ്റു സംഖ്യകൾക്കു് അതു് ഉപയോഗശൂന്യമാണു്). മനുഷ്യൻ വേദകാലത്തു് സംഖ്യകൾ എങ്ങനെയാണു് എഴുതിയിരുന്നതു് എന്നു് ഇതിനെ പൊക്കിക്കൊണ്ടു നടക്കുന്നവർക്കു വല്ല രൂപവുമുണ്ടോ?

    ഈ തട്ടിപ്പു് സമ്മതിക്കണമെങ്കിൽ വേദങ്ങൾ ഉണ്ടായതു് ക്ര്. പി. ആറാം നൂറ്റാണ്ടിനു ശേഷമാണെന്നു പറയേണ്ടി വരും. ഗണിതശാസ്ത്രചരിത്രത്തെപ്പറ്റി ഒരു ചുക്കും അറിയാത്ത ഒരു സന്ന്യാസി തനിക്കറിയാവുന്ന എളുപ്പവഴികൾ എഴുതിവെയ്ക്കുകയും അവയ്ക്കു് അനുയോജ്യമായ രീതിയിലുള്ള ചില സംസ്കൃതസൂത്രങ്ങൾ കണ്ടെത്തുകയോ ഉണ്ടാക്കുകയോ ചെയ്തതു് അദ്ദേഹത്തിന്റെ മരണത്തിനു ശേഷം ചിലർ ഭാരതീയപൈതൃകം എന്നു പറഞ്ഞാൽ മുന്നും പിന്നും നോക്കാതെ എടുത്തു ചാടുന്ന ഇന്ത്യക്കാരെ കബളിപ്പിക്കാൻ പുസ്തകമാക്കി മാർക്കറ്റ് ചെയ്യുകയും അങ്ങനെ വേദഗണിതം എന്ന വാക്കിന്റെ തന്നെ അർത്ഥം മാറിമറിഞ്ഞു പോവുകയും ആണുണ്ടായതു്.

    വേദഗണിതത്തട്ടിപ്പിനെപ്പറ്റി പറയണമെങ്കിൽ ഒരു വലിയ പോസ്റ്റു തന്നെ വേണ്ടിവരും. ഇനിയൊരിക്കലാവട്ടേ…

  2. ഭൂതസംഖ്യ, പരൽ‌പ്പേരു് എന്നീ അക്ഷരസംഖ്യാസമ്പ്രദായങ്ങൾ സ്ഥാനീയദശാംശസമ്പ്രദായം ഉപയോഗിച്ചുള്ളവയാണു്. അവ ഉണ്ടായതു് ആറാം നൂറ്റാണ്ടിനു ശേഷമാവാനേ വഴിയുള്ളൂ. അതിനു മുമ്പുണ്ടായെന്നു പറയുന്ന പല അവകാശവാദങ്ങളും തെറ്റാണു്. ഉദാഹരണമായി…
    1. മഹാഭാരതത്തിന്റെ ആദ്യരൂപം ഇന്നുള്ളതിനേക്കാൾ വളരെ ചെറുതായിരുന്നു. ആ ചെറിയ ഗ്രന്ഥത്തിനെ “ജയ” എന്നാണു വിളിക്കുന്നതു്. ഈ “ജയ” എന്ന വാക്കു് പരൽ‌പ്പേർ പ്രകാരം 18 എന്ന സംഖ്യയെ സൂചിപ്പിക്കുന്നു എന്നും അങ്ങനെ മഹാഭാരതത്തിലെ ഏറ്റവും പ്രധാനസംഖ്യയായ പതിനെട്ടിനെ (ഭാരതത്തിൽ പതിനെട്ടു പർവ്വങ്ങൾ, ഗീതയിൽ പതിനെട്ടദ്ധ്യായങ്ങൾ, കുരുക്ഷേത്രയുദ്ധത്തിൽ പതിനെട്ടു് അക്ഷൌഹിണികൾ) വ്യാസൻ പരൽ‌പ്പേരുപയോഗിച്ചു സൂചിപ്പിച്ചിരിക്കുന്നു എന്നും പലയിടത്തും കണ്ടിട്ടുണ്ടു്. ജയ എന്ന വാക്കു് പിൽക്കാലത്തുണ്ടായ പരൽ‌പ്പേരനുസരിച്ചു് 18-നെ സൂചിപ്പിക്കുന്നതു് തികച്ചും യാദൃച്ഛികം മാത്രം.
    2. ഉണ്ണുനീലിസന്ദേശത്തെപ്പറ്റിയുള്ള രസകരമായ ഒരു വാദം ഈ വിക്കി സംവാദത്തിൽ കാണാം. ഉണ്ണുനീലിസന്ദേശത്തിലെ ഒരു വാക്കു് അതെഴുതിയ ദിവസത്തെ കലിദിനസംഖ്യ പരൽ‌പ്പേർ ഉപയോഗിച്ചെഴുതിയെന്നാണു ‘രസികരഞ്ജിനി’ പത്രാധിപർ ഉൾപ്പെടെയുള്ള ചില ‘ചരിത്രകാരന്മാർ’ വാദിച്ചതു്. അങ്ങനെ കിട്ടിയ തീയതിയുടെ കാലത്തു് മലയാളഭാഷയുമില്ല, പൂജ്യവുമില്ല, സ്ഥാനീയദശാംശരീതിയുമില്ല, പരൽ‌പ്പേരുമില്ല.

മറ്റുദാഹരണങ്ങൾ വഴിയേ പറയാം. അവ പറയുമ്പോൾ ലിങ്ക് കൊടുക്കാൻ ഒരു റെഫറൻസ് ആകട്ടേ എന്നാലോചിച്ചുമാണു് ഇതെഴുതിയതു്.


അധികവായനയ്ക്കു്:

(Disclaimer: ഇവയിൽ പലതും പൂജ്യത്തെപ്പറ്റിയല്ല പറയുന്നതു്. പലതിലെയും പ്രതിപാദ്യത്തോടു് എനിക്കു പൂർണ്ണമായ യോജിപ്പുമില്ല.)

  1. B. Datta and A. N. Singh, History of Hindu Mathematics, Vol. I, Bharatiya Kala Prakashan, New Delhi 2004.
  2. George Gheverghese Joseph, The Crest of the Peacock – Non-European roots of Mathematics, Princeton University Press 2000.
  3. Charles Seife, Zero: The Biography of a Dangerous Idea, Penguin, 2000.
  4. Kaplan, R., The Nothing that Is: A Natural History of Zero, Oxford University Press USA, 2000.
  5. Teresi, D., Lost Discoveries, The ancient roots of Modern Science – from the Babylonians to the Maya, Simon & Schuster 2002.
  6. Wikipedia articles:
    1. 0 (Number)
    2. Positional notation
    3. History of Hindu-Arabic numeral system
    4. Brahmi numeral
    5. Maya numerals
    6. Aryabhata
    7. Brahmagupta

ഇതിനെപ്പറ്റി മുമ്പു ഞാന്‍ നേരിട്ടും ഈമെയിലിലൂടെയും പലരോടും ചർച്ച ചെയ്തപ്പോൾ വളരെയധികം എതിര്‍പ്പുകളും എതിര്‍വാദങ്ങളും നേരിടേണ്ടി വന്നു. അവയില്‍ പലതും എന്താണു ഞാന്‍ ഉദ്ദേശിച്ചതെന്നു വ്യക്തമായി മനസ്സിലാക്കാത്തതു കൊണ്ടായിരുന്നു. ചില അലപ്രകൾ (അ.ല.പ്ര. = അടിക്കടി ലഭിക്കുന്ന പ്രശ്നങ്ങൾ = Frequently Asked Questions) താഴെ:

ചോദ്യം:

അസംബന്ധം! “ശൂന്യം” എന്ന വാക്കു് വേദങ്ങളില്‍ തൊട്ടു് ഉപയോഗിച്ചിട്ടുള്ളതാണു്. ഭാരതീയര്‍ക്കു പൂജ്യത്തെപ്പറ്റി വേദകാലം മുതല്‍ക്കേ അറിയാമായിരുന്നു. അതിനെ ക്രി. പി. ആറാം നൂറ്റാണ്ടിലേയ്ക്കു തള്ളുന്നതു് ശരിയല്ല.

ഉത്തരം:
“ശൂന്യം” അല്ലെങ്കില്‍ ഒന്നുമില്ലായ്മ എന്ന ആശയം ഭാരതത്തിലും മറ്റു പല രാജ്യങ്ങളിലും പണ്ടു തൊട്ടേ ഉണ്ടായിരുന്നു. പില്‍ക്കാലത്തു് സ്ഥാനീയസമ്പ്രദായം വന്നപ്പോള്‍ ഒരു സംഖ്യ എഴുതുമ്പോള്‍ ഒരു പ്രത്യേകസ്ഥാനത്തു് ഒന്നുമില്ല എന്നു സൂചിപ്പിക്കാന്‍ ആ വാക്കു് ഉപയോഗിച്ചു. ഈ രണ്ടാമതു പറഞ്ഞ ടെക്നിക്കിനെപ്പറ്റിയാണു് നാം ഇവിടെ ചര്‍ച്ച ചെയ്യുന്നതു്; ആദ്യം പറഞ്ഞ വാക്കിനെപ്പറ്റിയല്ല.

ചോദ്യം:

പൂജ്യത്തിന്റെ ചിഹ്നം അതിനു മുമ്പേ പലരും ഉപയോഗിച്ചിരുന്നു. ഉദാഹരണത്തിനു ഛന്ദശ്ശാസ്ത്രകാരനായിരുന്ന പിംഗളന്‍ (ബി. സി. നാലാം നൂറ്റാണ്ടു്).

ഉത്തരം:
വട്ടത്തെ ഒരു ചിഹ്നമായി പലരും ഉപയോഗിച്ചിട്ടുണ്ടു്. അതു മുമ്പു പറഞ്ഞ പൂജ്യം എന്ന ആശയത്തിനു വേണ്ടി ഉപയോഗിച്ചെങ്കിലേ നാം ഇവിടെ ചര്‍ച്ച ചെയ്യുന്ന കാര്യത്തില്‍ എത്തൂ. ഛന്ദശ്ശാസ്ത്രത്തിലെ “ലഘു” എന്നതിനെ സൂചിപ്പിക്കാനാണു പിംഗളന്‍ വട്ടം ഉപയോഗിച്ചതു്.

ചോദ്യം:

പിംഗളന്‍ ഉപയോഗിച്ചതു് അങ്ങനെയല്ല. ആ വട്ടം (ലഘു) പൂജ്യം തന്നെയായിരുന്നു. ഗുരു ഒന്നും. അവയെ ഉപയോഗിച്ചുള്ള ദ്വ്യങ്കസമ്പ്രദായം (binary number system) കണ്ടുപിടിച്ചതു പിംഗളനാണു്. ദശാംസസമ്പ്രദായം അല്ലെങ്കിലും രണ്ടു് അടിസ്ഥാനമായ സ്ഥാനീയസമ്പ്രദായം തന്നെയാണു് അതു്. ബൈനോമിയല്‍ തിയറവും കണ്ടുപിടിച്ചതു പിംഗളനാണു്, ന്യൂട്ടനല്ല.

ഉത്തരം:
നമ്മുടെ ചര്‍ച്ചയ്ക്കു് ദശാംശസമ്പ്രദായം വേണമെന്നില്ല. സ്ഥാനീയസമ്പ്രദായം മതി. അടിസ്ഥാനം രണ്ടോ പത്തോ പതിനാറോ ഇരുപതോ അറുപതോ ആയിക്കോട്ടേ. ഒരു നിശ്ചിത-എണ്ണം അക്കങ്ങളെക്കൊണ്ടു് ഏതു സംഖ്യയെയും സൂചിപ്പിക്കാനുള്ള രീതിയാണു നമുക്കു വേണ്ടതു്.

പിംഗളന്‍ കണ്ടുപിടിച്ചതു് വളരെ സുപ്രധാനമായ മറ്റൊരു കണ്ടുപിടിത്തമാണു്. രണ്ടു തരത്തിലാകാവുന്ന (ഇവിടെ ഗുരുവും ലഘുവും) ചരങ്ങളുടെ (variables) കൂട്ടങ്ങള്‍ എത്ര വിധത്തില്‍ വിന്യസിച്ചു വൃത്തങ്ങള്‍ ഉണ്ടാക്കാം എന്നതു്. Permutations and combinations എന്നാണു് ഈ ഗണിതശാഖയുടെ പേരു്. സ്ഥാനീയസമ്പ്രദായത്തിനു മുമ്പേ ഈ ശാഖ പച്ച പിടിച്ചിരുന്നു. ആര്യഭടന്‍ ഇതിനെപ്പറ്റി സവിസ്തരം പ്രതിപാദിക്കുന്നുണ്ടു്.

ഈ ഗണിതശാഖ മറ്റു പല സുപ്രധാനശാഖകളുടെയും അടിസ്ഥാനമാണു്. സ്ഥാനീയസമ്പ്രദായം അതിലൊന്നാണു്. ഒരു നിശ്ചിത-എണ്ണം അക്കങ്ങളെ (ദശാംശസമ്പ്രദായത്തില്‍ 10) പല വിധത്തില്‍ വിന്യസിച്ചു് ഏതു സംഖ്യയെയും സൂചിപ്പിക്കുന്നതാണു് അതു്. പതിനേഴാം നൂറ്റാണ്ടില്‍ ഉടലെടുത്ത സംഭാവ്യതാശാസ്ത്രം (Theory of probability) ആണു മറ്റൊന്നു്. രണ്ടു സംഭവങ്ങള്‍ സംഭവിക്കാനുള്ള വിവിധരീതികള്‍ എണ്ണി ഒന്നിനെ അപേക്ഷിച്ചു മറ്റേതു സംഭവിക്കാനുള്ള സാദ്ധ്യത നിര്‍ണ്ണയിക്കുന്ന a-priori probability ഇതുപയോഗിച്ചേ ചെയ്യാന്‍ പറ്റൂ. പക്ഷേ, അതുകൊണ്ടു് സംഭാവ്യതാശാസ്ത്രവും സ്ഥാനീയസമ്പ്രദായവും Permutations and combinations കണ്ടുപിടിച്ച കാലത്തു തന്നെ കണ്ടുപിടിച്ചിരുന്നു എന്നു പറയാന്‍ പറ്റില്ല.

ബൈനോമിയല്‍ തിയറത്തിന്റെ കാര്യവും വ്യത്യസ്തമല്ല. ബൈനോമിയല്‍ വികസനത്തിലെ (binomial expansion) ഓരോ പദവും പിംഗളന്‍ തുടങ്ങിവെച്ച തിയറി കൊണ്ടാണു കണ്ടുപിടിക്കുന്നതു്. പക്ഷേ അതു കൊണ്ടു് ബൈനോമിയല്‍ തിയറം പിംഗളന്‍ കണ്ടുപിടിച്ചു എന്നു പറയുന്നതു് അബദ്ധമാണു്.

പാസ്കല്‍ ത്രികോണം എന്നറിയപ്പെടുന്ന വിദ്യ ബൈനോമിയല്‍ വികസനത്തിലെ ഓരോ പദത്തെയും നല്‍കുന്നു. പിംഗളന്റെ ഖണ്ഡമേരു എന്നു പറയുന്ന സമ്പ്രദായം പാസ്കല്‍ ത്രികോണം തന്നെയാണു് എന്നൊരു വാദം. ഖണ്ഡമേരു പാസ്കല്‍ ത്രികോണം തന്നെയാണെന്നതു ശരി തന്നെ. പക്ഷേ അതു കണ്ടുപിടിച്ചതു പിംഗളനല്ല. പിംഗളസൂത്രങ്ങളുടെ വ്യാഖ്യാതാവായ ഹലായുധന്‍ (ക്രി. പി. പന്ത്രണ്ടാം നൂറ്റാണ്ടു്) ആണു്. എന്തായാലും പാസ്കലിനു മുമ്പു് ഭാരതീയര്‍ അതു കണ്ടുപിടിച്ചിരുന്നു. പക്ഷേ ഹലായുധനും ബൈനോമിയല്‍ തിയറത്തില്‍ എത്തിയില്ല. പെര്‍മ്യൂട്ടേഷനുകള്‍ കണ്ടുപിടിക്കാന്‍ ആണു് ഹലായുധന്‍ ഖണ്ഡമേരു ഉപയോഗിച്ചതു്. പാസ്കലാകട്ടേ അതു ബൈനോമിയല്‍ കോ-എഫിഷ്യന്റുകളെ കണ്ടുപിടിക്കാനും. ഇവ തമ്മിലുള്ള ബന്ധം കൊണ്ടു് രണ്ടും ഒരേ രീതി ആയെന്നു മാത്രം.
ചോദ്യം:

ദശാംശസമ്പ്രദായം ക്രിസ്തുവിനു ശേഷമാണു് ഉണ്ടായതെന്നോ? ഏകം, ദശം, ശതം, … തുടങ്ങിയ സംഖ്യകളെപ്പറ്റി കേട്ടിട്ടില്ലേ? വേദങ്ങള്‍, രാമായണം, മഹാഭാരതം, ബുദ്ധകഥകള്‍ തുടങ്ങിയവയിലെല്ലാം ഈ സംഖ്യകളെപ്പറ്റി പറയുന്നുണ്ടു്.

ഉത്തരം:
ശരിയാണു്. മാത്രമല്ല, ഗ്രീക്കുകാര്‍ക്കു് Myriad എന്ന പതിനായിരത്തിനു മുകളില്‍ സംഖ്യകളില്ലായിരുന്ന കാലത്തും പരാര്‍ദ്ധവും (1017) അതിനപ്പുറമുള്ളവയും ആയ സംഖ്യകള്‍ക്കു പേരുണ്ടാക്കിയവരാണു ഭാരതീയര്‍. പക്ഷേ, നാം ഇവിടെ പറയുന്നതു ദശാംശസമ്പ്രദായത്തെപ്പറ്റിയല്ല, സ്ഥാനീയദശാംശസമ്പ്രദായത്തെപ്പറ്റിയാണു്. പത്തു് അക്കങ്ങള്‍ മാത്രം ഉപയോഗിച്ചു് സ്ഥാനം അനുസരിച്ചു് അക്കങ്ങള്‍ക്കു വിലയില്‍ വ്യത്യാസം വരുത്തുന്ന രീതിയെപ്പറ്റി.

സ്ഥാനീയസമ്പ്രദായം കണ്ടുപിടിക്കുന്നതിനു മുമ്പു തന്നെ ലോകത്തു പലയിടത്തും പത്തിനെ അടിസ്ഥാനമാക്കിയായിരുന്നു സംഖ്യകള്‍ ഉണ്ടാക്കിയിരുന്നതു്. (ബാബിലോണിയക്കാര്‍ അറുപതിനെയും മായന്മാര്‍ ഇരുപതിനെയും ആണു് അടിസ്ഥാനമാക്കിയതു്.) രണ്ടു കൈകളിലെയും കൂടി വിരലുകളുടെ എണ്ണം പത്തായതാണു് ഇതിനു കാരണമെന്നാണു് ഒരു തിയറി.

ഇതും അതും തമ്മില്‍ കൂട്ടിക്കുഴയ്ക്കരുതു്.

(കൂടുതൽ അലപ്രകൾ കമന്റുകൾ വരുന്ന വഴിയ്ക്കു് ഇടാം.)

ഗണിതം (Mathematics)
ഭാരതീയഗണിതം (Indian Mathematics)

Comments (18)

Permalink

നൊസ്റ്റാൽജിയ

ഇപ്പോഴുള്ള നൊസ്റ്റാൽജിയയൊക്കെ എന്തു നൊസ്റ്റാൽജിയ? എന്റെ ചെറുപ്പകാലത്തുണ്ടായിരുന്ന നൊസ്റ്റാൽജിയയാണു നൊസ്റ്റാൽജിയ!

(ആശയം സ്വന്തമല്ല)

നര്‍മ്മം
നുറുങ്ങുചിന്തകള്‍

Comments (20)

Permalink

കുതിച്ചുചാട്ടത്തിലേയ്ക്കു നീളുന്ന കാൽ‌വെയ്പുകൾ

“ഇതു് എന്റെ ഒരു ചെറിയ കാൽ‌വെയ്പു മാത്രം… മനുഷ്യരാശിക്കോ, ഒരു വലിയ കുതിച്ചുചാട്ടവും”
നീൽ ആസ്ട്രോംഗ്.

സമീപകാലത്തു് ബ്ലോഗുകൾക്കുണ്ടായ മുന്നേറ്റം അദ്ഭുതാവഹമാണു്. ലോകത്തുള്ള പല പ്രമുഖപത്രങ്ങളും അവരുടെ വാർത്തകളും കഥകളും ബ്ലോഗ് രൂപത്തിൽ വായനക്കാരുടെ പ്രതികരണവും ഉൾപ്പെടുത്തി ഇന്റർനെറ്റിൽ ഇന്നു പ്രസിദ്ധീകരിക്കുന്നു. ദിവസത്തിലോ ആഴ്ചയിലോ മാസത്തിലോ ഒരിക്കൽ മാത്രം ഇറങ്ങുന്ന പ്രിന്റഡ് പ്രസിദ്ധീകരണങ്ങളെക്കാൾ കൂടുതൽ ആശയവിനിമയത്തിനും പാരായണക്ഷമതയ്ക്കും ബ്ലോഗു പോലെയുള്ള മാദ്ധ്യമങ്ങളാണു കൂടുതൽ അനുയോജ്യം എന്നു കൂടുതൽ ആളുകളും സ്ഥാപനങ്ങളും മനസ്സിലാക്കി വരുന്നു.

അതേ സമയം തന്നെ, എഡിറ്റ് ചെയ്യപ്പെടാത്ത സ്വയം‌കൃതികൾ എന്ന നിലയ്ക്കു് ബ്ലോഗിലുള്ള കൃതികൾ അച്ചടിക്കപ്പെട്ട കൃതികളെക്കാൾ ഗുണമൂല്യം കുറവുള്ളവയാണു് എന്ന ഒരു ചിന്താഗതിയും ഉണ്ടു്. അച്ചടിയിലുള്ളവയെക്കാൾ ചവറുകൾ ബ്ലോഗിൽ ഉള്ളതുകൊണ്ടാവാം ഇതു്. എങ്കിലും അച്ചടിയിലുള്ള കൃതികളുടെ നിലവാരത്തിലുള്ളതോ അവയിലും മികച്ചതോ ആയ കൃതികൾ ബ്ലോഗുകളിൽ പ്രസിദ്ധീകരിക്കുന്നുണ്ടു് എന്ന വസ്തുതയും ആളുകൾ മനസ്സിലാക്കിയിട്ടുണ്ടു്.

മലയാളത്തെ സംബന്ധിച്ചിടത്തോളം അച്ചടിയിൽ ഉള്ള കൃതികളെക്കാൾ വളരെക്കുറച്ചു മാത്രമാണു ബ്ലോഗ് വായിക്കപ്പെടുന്നതു്. കമ്പ്യൂട്ടറുകൾ ഇന്നും എല്ലാവർക്കും ലഭ്യമല്ല എന്നതു് ഒരു കാരണം. വായനയ്ക്കു് ഒരു പുസ്തകമോ പ്രസിദ്ധീകരണമോ നൽകുന്ന സൌകര്യവും സുഖവും കമ്പ്യൂട്ടറിലെ പേജ് നൽകുന്നില്ല എന്നതു മറ്റൊരു കാരണം.

മാത്രമല്ല, അല്പം കൂടി കാഷ്വൽ വായനക്കാരാണു ബ്ലോഗിനുള്ളതു്. തിരക്കേറിയ ജീവിതത്തിനിടയിൽ വീണു കിട്ടുന്ന അല്പസമയത്തിനുള്ളിൽ വായിക്കുന്നവരാണു് ബ്ലോഗുവായനക്കാർ അധികവും എന്നതുകൊണ്ടു് സരളമായ പ്രതിപാദ്യമാണു് ബ്ലോഗുകളിൽ കൂടുതൽ ജനപ്രീതി ആർജ്ജിക്കുന്നതു്. ഒരു പരിധിയിൽ കൂടുതൽ വലിപ്പമോ ഉള്ളടക്കമോ ബ്ലോഗ് പോസ്റ്റുകൾ വായിക്കാനുള്ള ക്ഷമ പലപ്പോഴും വായനക്കർക്കില്ല. ഉള്ളവരാകട്ടേ, പോസ്റ്റുകളുടെ പ്രിന്റൌട്ട് എടുത്തു് സാവകാശം വായിക്കുകയാണു ചെയ്യുന്നതു്.

ഈ സാഹചര്യത്തിലാണു് ബ്ലോഗുകളിൽ പ്രസിദ്ധീകരിക്കപ്പെടുന്ന നല്ല കൃതികൾ തിരഞ്ഞെടുത്തു് പുസ്തകരൂപത്തിലോ മാസികാരൂപത്തിലോ പ്രസിദ്ധീകരിക്കേണ്ട ആവശ്യം മലയാളത്തിലെങ്കിലും ഇന്നുള്ളതു്. ഇതുവരെ ബ്ലോഗെഴുത്തുകാർ തന്നെ സ്വന്തം ചെലവിൽ ഏതെങ്കിലും പ്രസാധകരെക്കൊണ്ടു പ്രസിദ്ധീകരിപ്പിക്കുകയായിരുന്നു ചെയ്തിരുന്നതു്. അടുത്ത കാലത്തായി പ്രസാധകർ ഇതൊരു ബിസിനസ് മോഡലായി കൊണ്ടു നടക്കുകയും ചെയ്യുന്നുണ്ടു്. എഴുത്തുകാരിൽ നിന്നു് അമിതമായ പണം ഈടാക്കി പുസ്തകങ്ങൾ നേരേ ചൊവ്വേ പ്രൂഫ് റീഡ് പോലും ചെയ്യാതെ വികലമായി പ്രസിദ്ധീകരിച്ചതിന്റെ ഉദാഹരണങ്ങൾ കാട്ടാനുണ്ടു്.

ഒരു പുസ്തകം പ്രസിദ്ധീകരിക്കാൻ ആവശ്യമായ സർഗ്ഗവൈഭവവും സാങ്കേതികജ്ഞാനവും മലയാളം ബ്ലോഗെഴുത്തുകാരിൽത്തന്നെ ആവശ്യത്തിനുള്ളതു കൊണ്ടു് ഇത്തരം പ്രസാധകരെ ആശ്രയിക്കാതെ പുസ്തകങ്ങൾ ഒന്നുകൂടി നല്ല രീതിയിൽ കുറഞ്ഞ ചെലവിൽ പ്രസിദ്ധീകരിക്കാൻ കഴിയും എന്ന ചിന്തയിൽ നിന്നാണു് ബുക്ക് റിപ്പബ്ലിക്ക് എന്ന ആശയം ഉണ്ടായതു്. ഇന്റർനെറ്റിൽ കൂടി പരിചയപ്പെട്ട ഏതാനും ആളുകൾ ചേർന്നുള്ള ഈ സംരംഭത്തിന്റെ ആദ്യത്തെ ഫലം ഈയാഴ്ച പുറത്തു വരുകയാണു്.

തുടക്കത്തിലുള്ള മൂലധനം സംഭരിച്ചതും, കൃതി തിരഞ്ഞെടുത്തതും, ടൈപ്പു ചെയ്തതും, ടൈപ്‌സെറ്റു ചെയ്തതും, വിതരണത്തിനും പരസ്യത്തിനുമുള്ള ഏർപ്പാടുകൾ ചെയ്യുന്നതും ബ്ലോഗിലൂടെ പരിചയപ്പെട്ട ഈ ആളുകൾ തന്നെയാണു്. തീരുമാനമെടുത്തതിനു ശേഷം വളരെ കുറച്ചു സമയത്തിനുള്ളിൽത്തന്നെ ആദ്യത്തെ കൃതി പ്രസിദ്ധീകൃതമാകുകയാണു്.


ബുക്ക് റിപ്പബ്ലിക്കിലൂടെ ആദ്യം പ്രസിദ്ധീകരിക്കുന്ന പുസ്തകം ലാപുട എന്ന ബ്ലോഗിലൂടെ മലയാളകവിതയുടെ കരുത്തും ചാരുതയും ബ്ലോഗുവായനക്കാർക്കു പകർന്നു തന്ന ടി. പി. വിനോദിന്റെ “നിലവിളിയെക്കുറിച്ചുള്ള കടങ്കഥകൾ” എന്ന കവിതാസമാഹാരമാണു്. ബ്ലോഗിൽ പ്രസിദ്ധീകരിച്ച 35 കവിതകൾ കൂടാതെ 14 കവിതകളും ഈ സമാഹാരത്തിലുണ്ടു്. ടൈപ് സെറ്റ് ചെയ്തതു് ശ്രീനി ശ്രീധരൻ (പച്ചാളം). കവറും ലേ ഔട്ടും തയ്യാറാക്കിയതു് ഉന്മേഷ് ദസ്തക്കീർ. ഡോ. സോമൻ കടലൂരിന്റെ പഠനവും ഇതിലുണ്ടു്.

മലയാളബ്ലോഗിലെ അവിസ്മരണീയമായ ഒരു അനുഭവമാണു ലാപുട. വൃത്തത്തിലും താളത്തിലും പഴയ സങ്കേതങ്ങളിലും മാത്രം ഒതുങ്ങിനിൽക്കുന്നതു മാത്രമേ നല്ല കവിതയാകൂ എന്നു ശഠിക്കുന്നവർക്കു കവിതയുടെ ഒതുക്കവും മുറുക്കവും കരുത്തും ഗദ്യത്തിലൂടെ വെളിവാകുന്നതു കാട്ടിക്കൊടുക്കാൻ ലാപുടയെക്കാൾ മികച്ച ഒരു സ്ഥലം കുറവാണു്. കവിതയെന്നാൽ പദ്യത്തിന്റെ ചട്ടക്കൂടിനും മുകളിലുള്ള ഒരു അനുഭവമാണെന്നും, വൃത്തമല്ല മുറുക്കമാണു് അതിന്റെ മുഖമുദ്ര എന്നും അതു വെളിവാക്കിത്തരുന്നു. എണ്ണയെപ്പറ്റി സംസാരിക്കുന്ന പിണ്ണാക്കിനെപ്പറ്റി ആയാലും, മനുഷ്യജീവിതത്തെ സ്വാംശീകരിക്കുന്ന ചിഹ്നങ്ങളെപ്പറ്റി ആയാലും, ബോറടിയുടെ ദൈവത്തെപ്പറ്റിയാണെങ്കിലും, പറയാനുദ്ദേശിക്കുന്ന അനുഭവത്തെ അതിനനുയോജ്യമായ വാക്കുകൾ തന്നെ ഉപയോഗിച്ചു് വായനക്കാരെ ശുദ്ധകവിതയുടെ മായികലോകത്തേയ്ക്കു കൊണ്ടുപോകുന്ന ലാപുടക്കവിതകൾ തന്നെയാണു് ബ്ലോഗിൽ നിന്നു് ആദ്യം പ്രകാശം കാണേണ്ടതു്.

ബുക്ക് റിപ്പബ്ലിക്കിനും ലാപുടയ്ക്കും ആശംസകൾ!


ബ്ലോഗിൽ നിന്നുള്ള മറ്റൊരു സൃഷ്ടിയും ഈ അടുത്തിടെ പുറത്തിറങ്ങി. കെ. വി. മണികണ്ഠൻ (സങ്കുചിതമനസ്കൻ) എഴുതി സനൽ ശശിധരൻ (സനാതനൻ) സംവിധാനം ചെയ്ത പരോൾ എന്ന സിനിമ. ബുക്ക് റിപ്പബ്ലിക്കിനെപ്പോലെ തന്നെയുള്ള ഒരു സംരംഭമാണു് അതും. വലരെ നിലവാരം പുലർത്തുന്ന സിനിമയെന്നു് ഇതിനകം തന്നെ പേരു നേടിയ “പരോ”ളിന്റെ ശില്പികൾക്കും ആശംസകൾ!


ഈ വരുന്ന ജനുവരി പത്താം തീയതി വൈകിട്ടു് നാലരയ്ക്കു് ഇടപ്പള്ളിയിലുള്ള ചങ്ങമ്പുഴ പാർക്കിൽ വെച്ചു് വിനോദിന്റെ “നിലവിളിയെക്കുറിച്ചുള്ള കടങ്കഥകൾ” പ്രകാശനം ചെയ്യപ്പെടുകയാണു്. ബ്ലോഗിനകത്തും പുറത്തുമുള്ള പ്രശസ്തരായ എഴുത്തുകാർ പങ്കെടുക്കുന്നു. “പരോൾ” എന്ന സിനിമയുടെ പ്രദർശനവും ഉണ്ടാവും. വിനോദ് ശങ്കരന്റെ സിതാർ കച്ചേരിയും. ക്ഷണക്കത്തു് ചുവടെ.

എല്ലാ സാഹിത്യപ്രേമികളും ഇതിൽ കഴിയുമെങ്കിൽ പങ്കെടുക്കണമെന്നും പുസ്തകം വാങ്ങി ഈ സംരംഭത്തെ പ്രോത്സാഹിപ്പിക്കണമെന്നും അഭ്യർത്ഥിക്കുന്നു.

കൂടുതൽ വിവരങ്ങൾക്കു്:

  • വെള്ളെഴുത്തിന്റെ ക്ഷണക്കത്തു്.
  • ഈ വിഷയത്തെപ്പറ്റിയുള്ള ബ്ലോഗ്‌പോസ്റ്റുകൾ, വാർത്തകൾ, പഠനങ്ങൾ എന്നിവ സമാഹരിച്ച ബുക്ക് റിപ്പബ്ലിക്ക് ലിങ്ക്.
  • പുസ്തകം വാങ്ങാനുള്ള ലിങ്ക്.

സാഹിത്യം

Comments (1)

Permalink